Representation theory is concerned with the ways of writing elements of abstract algebraic structures as linear transformations of vector spaces. Typical structures amenable to representation theory are groups, associative algebras and Lie algebras. In this thesis we study linear representations of finite groups. The study focuses on character theory and how character theory can be used to extract information from a group. Prior to that, concepts needed to treat character theory, and some of their ramifications, are investigated. The study is based on existing literature, with excessive use of examples to illuminate important aspects. An example treating a class of p-groups is also discussed.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-69642 |
Date | January 2017 |
Creators | Stavis, Andreas |
Publisher | Karlstads universitet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf, application/pdf |
Rights | info:eu-repo/semantics/openAccess, info:eu-repo/semantics/openAccess |
Relation | Andreas Stavis |
Page generated in 0.0021 seconds