Mes travaux de thèse s’inscrivent dans le cadre du projet ANR GRAPHEM1 (Graphemebased Retrieval and Analysis for PaleograpHic Expertise of Middle Age Manuscripts). Ilsprésentent une contribution méthodologique applicable à l'analyse automatique des écrituresanciennes pour assister les experts en paléographie dans le délicat travail d’étude et dedéchiffrage des écritures.L’objectif principal est de contribuer à une instrumetation du corpus des manuscritsmédiévaux détenus par l’Institut de Recherche en Histoire des Textes (IRHT – Paris) en aidantles paléographes spécialisés dans ce domaine dans leur travail de compréhension de l’évolutiondes formes de l’écriture par la mise en place de méthodes efficaces d’accès au contenu desmanuscrits reposant sur une analyse fine des formes décrites sous la formes de petits fragments(les graphèmes). Dans mes travaux de doctorats, j’ai choisi d’étudier la dynamique del’élément le plus basique de l’écriture appelé le ductus2 et qui d’après les paléographes apportebeaucoup d’informations sur le style d’écriture et l’époque d’élaboration du manuscrit.Mes contributions majeures se situent à deux niveaux : une première étape de prétraitementdes images fortement dégradées assurant une décomposition optimale des formes en graphèmescontenant l’information du ductus. Pour cette étape de décomposition des manuscrits, nousavons procédé à la mise en place d’une méthodologie complète de suivi de traits à partir del’extraction d’un squelette obtenu à partir de procédures de rehaussement de contraste et dediffusion de gradients. Le suivi complet du tracé a été obtenu à partir de l’application des règlesfondamentales d’exécution des traits d’écriture, enseignées aux copistes du Moyen Age. Il s’agitd’information de dynamique de formation des traits portant essentiellement sur des indicationsde directions privilégiées.Dans une seconde étape, nous avons cherché à caractériser ces graphèmes par desdescripteurs de formes visuelles compréhensibles à la fois par les paléographes et lesinformaticiens et garantissant une représentation la plus complète possible de l’écriture d’unpoint de vue géométrique et morphologique. A partir de cette caractérisation, nous avonsproposé une approche de clustering assurant un regroupement des graphèmes en classeshomogènes par l’utilisation d’un algorithme de classification non-supervisé basée sur lacoloration de graphe. Le résultat du clustering des graphèmes a conduit à la formation dedictionnaires de formes caractérisant de manière individuelle et discriminante chaque manuscrittraité. Nous avons également étudié la puissance discriminatoire de ces descripteurs afin d’obtenir la meilleure représentation d’un manuscrit en dictionnaire de formes. Cette étude a étéfaite en exploitant les algorithmes génétiques par leur capacité à produire de bonne sélection decaractéristiques.L’ensemble de ces contributions a été testé à partir d’une application CBIR sur trois bases demanuscrits dont deux médiévales (manuscrits de la base d’Oxford et manuscrits de l’IRHT, baseprincipale du projet), et une base comprenant de manuscrits contemporains utilisée lors de lacompétition d’identification de scripteurs d’ICDAR 2011. L’exploitation de notre méthode dedescription et de classification a été faite sur une base contemporaine afin de positionner notrecontribution par rapport aux autres travaux relevant du domaine de l’identification d’écritures etétudier son pouvoir de généralisation à d’autres types de documents. Les résultats trèsencourageants que nous avons obtenus sur les bases médiévales et la base contemporaine, ontmontré la robustesse de notre approche aux variations de formes et de styles et son caractèrerésolument généralisable à tout type de documents écrits. / My thesis work is part of the ANR GRAPHEM Project (Grapheme based Retrieval andAnalysis for Expertise paleographic Manuscripts of Middle Age). It represents a methodologicalcontribution applicable to the automatic analysis of ancient writings to assist the experts inpaleography in the delicate work of the studying and deciphering the writing.The main objective is to contribute to an instrumentation of the corpus of medievalmanuscripts held by “Institut de Recherche en Histoire de Textes” (IRHT-Paris), by helping thepaleographers specialized in this field in their work of understanding the evolution of forms inthe writing, with the establishment of effective methods to access the contents of manuscriptsbased on a fine analysis of the forms described in the form of small fragments (graphemes). Inmy PhD work, I chose to study the dynamic of the most basic element of the writing called theductus and which according to the paleographers, brings a lot of information on the style ofwriting and the era of the elaboration of the manuscript.My major contribution is situated at two levels: a first step of preprocessing of severelydegraded images to ensure an optimal decomposition of the forms into graphemes containingthe ductus information. For this decomposition step of manuscripts, we have proceeded to theestablishment of a complete methodology for the tracings of strokes by the extraction of theskeleton obtained from the contrast enhancement and the diffusion of the gradient procedures.The complete tracking of the strokes was obtained from the application of fundamentalexecution rules of the strokes taught to the scribes of the Middle Ages. It is related to thedynamic information of the formation of strokes focusing essentially on indications of theprivileged directions.In a second step, we have tried to characterize the graphemes by visual shape descriptorsunderstandable by both the computer scientists and the paleographers and thus unsuring themost complete possible representation of the wrting from a geometrical and morphological pointof view. From this characterization, we have have proposed a clustering approach insuring agrouping of graphemes into homogeneous classes by using a non-supervised classificationalgorithm based on the graph coloring. The result of the clustering of graphemes led to theformation of a codebook characterizing in an individual and discriminating way each processedmanuscript. We have also studied the discriminating power of the descriptors in order to obtaina better representation of a manuscript into a codebook. This study was done by exploiting thegenetic algorithms by their ability to produce a good feature selection.The set of the contributions was tested from a CBIR application on three databases ofmanuscripts including two medieval databases (manuscripts from the Oxford and IRHTdatabases), and database of containing contemporary manuscripts used in the writersidentification contest of ICDAR 2011. The exploitation of our description and classificationmethod was applied on a cotemporary database in order to position our contribution withrespect to other relevant works in the writrings identification domain and study itsgeneralization power to other types of manuscripts. The very encouraging results that weobtained on the medieval and contemporary databases, showed the robustness of our approachto the variations of the shapes and styles and its resolutely generalized character to all types ofhandwritten documents.
Identifer | oai:union.ndltd.org:theses.fr/2012PA05S017 |
Date | 22 November 2012 |
Creators | Daher, Hani |
Contributors | Paris 5, Vincent, Nicole |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0032 seconds