Return to search

Integration of solar thermal collectors in the dairy industry: A techno-economic assessment : A case study of Dubai

A predominant amount of energy needed in the industrial sector is in the form of heat. A significant number of industries in the world still relies on fossil fuels for meeting their heat requirements. A transition to renewable energy for heating needs is at a snail's pace due to fossil fuel lock-in, cost superiority of conventional fuels, and less government support for renewable technology for thermal requirements. The dairy industry is one of the sectors that need heat energy for its production process. This study deals with a techno-economic analysis on the integration of parabolic trough collectors in the dairy industry. The thesis finds the barriers for solar-thermal collectors to evolve in the dairy sector and the viewpoint of the dairy industry towards the acceptance of solar thermal for meeting their thermal needs. From a literature review, it is observed that the need for dairy product will increase in the coming year. To meet the demand, the production process has to be increased. For sustainable production, companies have to rely on environment-friendly energy sources to meet the thermal demand. In the thesis work, it was also found that for several solar fractions, the LevelizedCost of Heat (LCoH) of solar-assisted heating system is less than the LCoH of the fossil-fueled conventional boiler. Therefore, it is economically viable to integrate solar thermal collectors in the dairy industry. The project also compares the LCoHof solar-assisted heating system when solar integration is done at a) feed water heating, b) direct steam generation, and c) process integration. The effect of integration point on the solar fraction, LCoH, and carbon mitigation potential is presented for a real case dairy unit in Dubai. The simulations are performed using a dynamic simulation tool. Results show that minimum LCoH and solar fraction are achieved for process integration. The process integration results in up to 90 % of the solar fraction. Through process integration, the LCoH of the conventional boiler can be reduced by 60%.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-446212
Date January 2021
CreatorsShah, Hassim
PublisherUppsala universitet, Institutionen för elektroteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationELEKTRO-MFE ; 21002

Page generated in 0.0016 seconds