Return to search

Multivalent sialic acid binding proteins as novel therapeutics for influenza and parainfluenza infection

In nature, proteins with weak binding affinity often use a multivalency approach to enhance protein affinity via an avidity effect. Interested in this multivalency approach, we have isolated a carbohydrate binding module (CBM) that recognises sialic acid (known as a CBM40 domain) from both Vibrio cholerae (Vc) and Streptococcus pneumoniae (Sp) NanA sialidases, and generated multivalent polypeptides from them using molecular biology. Multivalent CBM40 constructs were designed either using a tandem repeat approach to produce trimeric or tetrameric forms that we call Vc3CBM and Vc4CBM, respectively, or through the addition of a trimerization domain derived from Pseudomonas aeruginosa pseudaminidase to produce three trimeric forms of proteins known as Vc-CBMTD (WT), Vc-CBMTD (Mutant) and Sp-CBMTD). Due to the position and flexibility of the linker between the trimerization domain and the CBM40 domain, site directed mutagenesis was employed to introduce a disulphide bond between the monomers at positions S164C and T83C of the CBM40 domain in order to promote a stable orientation of the binding site for easier access of sialic acids. Data from isothermal titration calorimetry (ITC) reveals that interaction of multivalent CBM40 proteins with α(2,3)-sialyllactose was mainly enthalpy driven with entropy contributing unfavorably to the interaction suggesting that these proteins establish a strong binding affinity to their ligand minimizing dissociation to produce stable multivalent molecules. However, using surface plasmon resonance (SPR), a mixed balance of entropy and enthalpy contributions was found with all constructs as determined by Van't Hoff plots. This proved that binding does not occur through a simple protein-ligand interaction but through disruption of hydrophobic and/or ionic hydration that provide the driving force to the process. Interestingly, the valency of multiple-linked polypeptides also plays an important part in the protein stabilization. However, little is known about their detailed structure when in multivalent form, as attempts to crystallize the whole protein molecule of Vc-CBMTD (WT) failed due to linker and domain flexibility. Only the trimerization domain (TD) part from Pseudomonas aeruginosa pseudaminidase was successfully crystallized and structure was determined to 3.0 Å without its CBM40 domain attached. In this thesis, we have also reported on the potential anti-influenza and anti- parainfluenza properties of these proteins, which were found to block attachment and inhibit infection of several influenza A and parainfluenza virus strains in vitro. As widely mentioned in literature, terminal sialic acids on the cell surface of mammalian host tissue provide a target for various pathogenic organisms to bind. Levels of viral inhibition were greatest against A/Udorn/72 H3N2 virus for Vc4CBM and Vc3CBM constructs with the lowest EC50 of 0.59 µM and 0.94 µM respectively, however most of the multivalent proteins tested were also effective against A/WSN/33 H1N1 and A/PR8/34 H1N1 subtypes. For parainfluenza virus, all constructs containing V. cholerae sialidase CBM40 domain showed great effect in inhibiting virus infection during cell protection assay. The best EC50 values were 0.2 µM from Vc-CBMTD (WT) followed by 1.17 µM from Vc4CBM and 1.78 µM from Vc-CBMTD (Mutant) which was against hPIV2, hPIV3 and hPIV5 infections respectively. Only a construct from S. pneumoniae sialidase known as Sp-CBMTD showed negligible effect on cell protection. All constructs were further tested for cytotoxicity in mammalian cell culture as well as undergoing an inhibition study on viral replication proteins. For the in vivo study, we also demonstrated the effectiveness of Vc4CBM to protect cotton rats and mice from hPIV3 and Streptococcus pneumoniae infections, when given intranasally in advance or on the day of infection. Therefore, these novel multivalent proteins could be promising candidates as broad-spectrum inhibitors or as a prophylactic treatment for both influenza and parainfluenza associated diseases.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:595637
Date January 2014
CreatorsAlias, Nadiawati
ContributorsTaylor, Garry L.
PublisherUniversity of St Andrews
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10023/4479

Page generated in 0.0061 seconds