Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-30T12:45:52Z
No. of bitstreams: 2
Philippsen, Hellen Kempfer-2011-dissertação.pdf: 1457910 bytes, checksum: 4ee585b7a28a164d44414a0a2ef76ae5 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-30T15:28:08Z (GMT) No. of bitstreams: 2
Philippsen, Hellen Kempfer-2011-dissertação.pdf: 1457910 bytes, checksum: 4ee585b7a28a164d44414a0a2ef76ae5 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-30T15:28:08Z (GMT). No. of bitstreams: 2
Philippsen, Hellen Kempfer-2011-dissertação.pdf: 1457910 bytes, checksum: 4ee585b7a28a164d44414a0a2ef76ae5 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2011-08-30 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Paracoccidioides brasiliensis is a dimorphic fungus, the causative agent of paracoccidioidomycosis (PCM), a systemic mycosis that affects mainly people from Latin America. In order to establish infection, many factors are required for P. brasiliensis, such as cell wall remodeling and the ability to capture nutrients from the host. As iron is an important cofactor of many reactions, the host reduces the availability of free iron ions to the pathogen. Therefore, this study aims to elucidate the proteomic profile of the cell wall in response to iron depletion. The extraction of surface proteins of the cell wall in iron restriction and iron replete conditions was performed and the proteomic profile was obtained by two-dimensional electrophoresis with subsequent analysis of images. Statistical analysis demonstrated proteins with differential level of expression in each condition, which were subjected to tryptic digestion and identification by mass spectrometry. It was identified 26 proteins by peptide mass fingerprint (PMF) and/or ions fragmentation (MS/MS). The majority of these proteins have post - translational modifications and only some have in their sequences signal peptide, suggesting that they are addressed to the surface by non-classical pathways. / Paracoccidioides brasiliensis é um fungo patogênico termodimórfico, agente causador da Paracoccidioidomicose (PCM), uma micose sistêmica que afeta principalmente indivíduos da América Latina. Muitos fatores são necessários para que P. brasiliensis estabeleça infecção, como o remodelamento da parede celular e a capacidade de captar nutrientes do hospedeiro para seu metabolismo. Como o íon ferro é um cofator de diversas reações, o hospedeiro diminui a disponibilidade de íons ferro na forma livre para o patógeno. Portanto, o presente trabalho visa investigar o perfil de proteínas da parede celular de P. brasiliensis quando em condição de depleção do íon ferro. Para esse fim, realizou-se a extração das proteínas da parede das células de P. brasiliensis em meio com restrição do íon ferro. O perfil proteômico das condições experimental e controle foram obtidos por eletroforese bidimensional com posterior análise de imagens. Análises estatísticas demonstraram as proteínas reguladas nas condições de depleção de ferro, que foram submetidas à digestão tríptica e identificação por espectrometria de massas. Foram identificadas 26 proteínas por perfil de digestão tríptica (PMF) e/ou perfil de fragmentação dos íons (MS/MS). A maioria dessas proteínas apresenta preditas modificações pós - traducionais e apenas algumas apresentam peptídeo sinal em suas sequências, o que sugere que elas são endereçadas à superfície por vias não clássicas.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/3222 |
Date | 30 August 2011 |
Creators | Philippsen, Hellen Kempfer |
Contributors | Soares, Célia Maria de Almeida, Soares, Célia Maria de Almeida, Kipnis, André, Pereira, Maristela, Bailão, Alexandre Melo, Borges, Clayton Luís |
Publisher | Universidade Federal de Goiás, Programa de Pós-graduação em Medicina Tropical e Saúde Publica (IPTSP), UFG, Brasil, Instituto de Patologia Tropical e Saúde Pública - IPTSP (RG) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Relation | 6085308344741430434, 600, 600, 600, 600, -7769011444564556288, 8648187577661350585, -2555911436985713659, 1. Abdul, R.A.; Oellerich, M.; Amstrong, V.W.; Riemenschneider, B.; Reichard, U. (2006). Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. Proteome research. 5, 954-962. 2. Almeida, F.B.D.R.; Carvalho, F.C.; Mariano, V.S.; Alegre, A.C.P.; Silva, R.N.; Hanna, E.S.; Roque-Barreira, M.C. (2011). Influence of n-glycosylation on the morphogenesis and growth of Paracoccidioides brasiliensis and on the biological activities of yeast proteins. Plos One. 6, (12) 129-216. 3. Bagagli, E.; Bosco, S.M.G.; Theodoro, R.C.; Franco, M. (2006). Phylogenetic and evolutionary aspects of Paracoccidioides brasiliensis reveal a long coexistence with animal hosts that explain several biological features of the pathogen. Infect Genet Evol. 6, 344–51. 4. Barbosa, M.S.; Báo, S.N.; Andreotti, P.F.; Faria, F.P.; Felipe, M.S.S.; Feitosa, L.S.; Mendes-Giannini, M.J.S.; Soares, C.M.A. (2006). Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect Immun. 74, 382-389. 5. Boone, T.J.; Burnham, C.A.; Tyrrell, G.J. (2011). Binding of group B streptococcal phosphoglycerate kinase to plasminogen and actin. Microb Pathog. 51, 255-61. 6. Bradfor, M.M. (1976). A dye binding assay for protein. Anal Biochem. 72, 248-254. 7. Bullen, J.J.; Rogers, H.J.; Spalding, P.B.; Ward, C.G. (2005). Iron and infection: the heart of the matter. FEMS Immunology and Medical Microbiology. 43, 325 - 330. 8. Camargo, Z.P. and M.F. Franco (2000). Current Knowledge on Pathogenesis and immunodiagnosis of paracoccidioidomycosis. Rev. Iberoam Micol. 17, 41-48. 9. Chen, R.E. & Thorner, J. (2007). Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 1773, 1311–1340. 10. da Silva, S.P.; Borges-Walmsley, M.I.; Pereira, I.S.; Soares, C.M.A.; Walmsley, A.R.; Felipe, M.S.S. (1999). The differential expression and splicing of hsp70 gene during transition from mycelial to the infective yeast form of the human pathogenic fungus Paracoccidioides brasiliensis. Mol Microbiol. 31, 1039-1050. 11. Donofrio, F.C.; Calil, A.C.; Miranda, E.T.; Almeida, A.M.; Benard, G.; Soares, C.P.; Nogueira, S.V.; Soares, C.M.A.; Mendes-Giannini, A. (2009). Enolase from 77 Paracoccidioides brasiliensis: isolation and identification as a fibronectin-binding protein. J. Med. Microbiol. 58, 706-713. 12. Dunn, L.L.; Rahmanto, T.S.; Rischardson, D.R. (2006). Iron uptake and metabolism in the new millennium. TRENDS Cell Biology. 17 (2), 93-100. 13. Ecker, M.; Deutzmann, R.; Lehle L.; Mrsa, V,; Tanner, W. (2006). Pir proteins of Saccharomyces cerevisiae are attached to β-1,3-glucan by a new proteincarbohydrate linkage. J Biol Chem. 281, 11523-11529. 14. Eroles, P.; Sentandreu , M.; Elorza, M.V.; Sentandreu, R. (1995). Cloning of a DNA fragment ecoding part of a 70-kDa hest shock protein of Candida albicans. FEMS Microbiol Lett. 128 (1), 95-100. 15. Fava Netto, C.; Vegas, V.S.; Sciannamea, J.J.; Guarnieri, D.B. (1969). Antígeno polissacarídeo do Paracoccidioides brasiliensis. Estudo do tempo de cultura do P. brasiliensis necessário ao preparo do antígeno. Rev Inst Med Trop. 11, 177–181. 16. Finco, O.; Bonci, A.; Agnusdei, M.; Scarselli, M.; Petracca, R.; Norais, N.; Ferrari, G.; Garaguso, I.; Donati, M.; Sambri, V.; Cevenini, R.; Ratti, G.; Grandi, G. (2005). Identification of new potential vaccine candidates against Chlamydia pneumoniae by multiple screenings. Vaccine. 23, 1178–1188. 17. Fonseca, C.A.; Jesuino, R.S.; Felipe, M.S.; Cunha, D.A.; Brito, W.A.; Soares, C.M.A. (2001). Two-dimensional electrophoresis and characterization of antigens from Paracoccidioides brasiliensis. Microbes Infect. 3 (7), 535–42. 18. Fu, H.; Subramanian, R.R.; Masters, S.C. (2000). 14-3-3 proteins: structure, function and regulation. Annu Rev. Pharmacol. Toxicol. 40, 617-47. 19. Gil-Navarro, I.; Gil, M.L.; Casanova, M.; O’Connor, J.E.; Martínez, J.P.; Gozalbo, D. (1997). The glycolytic enzyme glyceraldehyde-3-phosphatedehydrogenase of Candida albicans is a surface antigen. J. Bacteriol. 179, 4992–4999. 20. Gomez, B.L.; Figueroa, J.I.; Hamilton, A.J.; Ortiz, B.L.; Robledo, M.A.; et al. (1997). Development of a novel antigen detection test for histoplasmosis. J. Clin. Microbiol. 35, 2618–2622. 21. Gonzalez, A.; Lenzi, H.L.; Motta, E.M.; Caputo, L.; Sahaza, J.H.; Cock, A.M.; Rui, A.C.; Restrepo, A.; Cano, L.E. (2005). Expression of adhesion molecules in lungs of mice infected with Paracoccidioides brasiliensis conidia. Microb Infect. 7, 666-73. 22. Herbert, B.; Galvani, M.; Hamdan, M.; Olivieri, E.; MacCarthy, J.; et al. (2001). Reduction and alkylation of proteins in preparation of two-dimensional map analysis: why, when, and how? Electrophoresis. 22, 2046–2057. 78 23. Kanetsuna, F.; Carbonell, L.M.; Moreno, R.E.; Rodriguez, E.J. (1969). Cell wall composition of the yeast and mycelial forms of Paracoccidioides brasiliensis. J Bacteriol. 97 (3), 1036-41. 24. Kapteyn, J.C.; Montijn, R.C.; Vink, E.; de la Cruz, J.; Llobell, A.; Douwes, J.E.; Shimoi, H.; Lipke, P.N.; Klis, F.M. (1996). Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiesterlinked-1,3--1,6-glucan heteropolymer. Glycobiology. 6, 337–345. 25. Keller, S.; Sanderson, M.P.; Stoeck, A.; Altevogt, P. (2006). Exosomes: from biogenesis and secretion to biological function. Immunol Lett;107:102–8. 26. Kirk, S.J. & Ward, T.H. (2007). COPII under microscope. Semin. Cell. Dev. Biol. 18, 435-447. 27. Klis, F.M.; Boorsma, A.; De Groot, P.W. (2006). Cell wall construction in Saccharomyces cerevisiae. Yeast. 23, 185–202. 28. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685. 29. Lee, K.W.; Shalaby, K.A.; Thakur, A.; Medhat, A.; Karim, A.M.; LoVerde, P.T. (1995). Cloning of the gene for phosphoglycerate kinase from Schistosoma mansoni and characterization of its gene product. Mol. Biochem. Parasitol. 71, 221–23. 30. Liang, Y.; Lib, W.; Zhang, Y. (2005). Functional analysis of tunicamycin-inducible gene A polypeptide from Aspergillus niger. Biochem. Cell Biol. 83 (5), 654-8. 31. Ludwig, L.; Strahl, S.; Tanner, W. (2006). Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angew Chem. Int. 45, 6802–6818. 32. Marcet-Houben, M.; Gabadón, T. (2009). The tree versus the forest: the fungal tree of life and the topological diversity within the yeast phylome. Plos One. 4 (2), 4357. 33. Martínez-Gomariz, M.; Perumal, P; Mekala, S; Nombela, C.; Chaffin, W.L.;Gil, C. (2009). Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae,and biofilms of Candida albicans. Proteomics. 9, 0000–0000. 34. Meyer, T.N.; da Silva, A.L. (1999). Resposta celular ao estresse. Med. Brasil. 45.(2), 181-8. 35. Montagnoli, C.; Sandini, S.; Bacci, A.; Romani, L.; La Valle, R. (2004). Immunogenicity and protective effect of recombinant enolase of Candida albicans in a murine model of systemic candidiasis. Med. Mycol. 42, 319–324. 79 36. Mrsa, V.; Ecker, M.; Strahl-Bolsinger, S.; Nimtz, M.; Lehle, L.; Tanner, W. (1999). Deletion of new covalently linked cell wall glycoproteins alters the electrophoretic mobility of phosphorylated wall components of Saccharomyces cerevisiae. J. Bacteriol. 181, 3076-3086. 37. Nicola, A.M.; Andrade, R.V.; Dantas, A.S.; Andrade, P.A.; Arraes, F.B.M.; Fernandes, L.; Silva-Pereira, I.; Felipe, M.S.S. (2008). The stress responsive and morphologically regulated hsp90 gene from Paracoccidioides brasiliensis is essential to cell viability. BMC. Microbiol. 8, 158. 38. Nigam, S.; Sarma, P.V.; Ghosh, P.C.; Sarma, P.U. (2001). Characrterization of Aspergillus fumigatus protein dissulfide isomerase family gene. Gene. 27, 143-150. 39. Nickel, W.; Seedorf, M. (2008). Unconventional Mechanisms of Protein Transport to the Cell. Surface of Eukaryotic Cells. Annu Rev. Cell. Dev. Biol. 40. Nogueira, S.V.; Fonseca, F.L.; Rodrigues, M.L.; Mundodi, V.; Abi-Chacra, E.A.; Winters, M.S.; Alderete, J.F.; Soares, C.M.A. (2010). Paracoccidioides brasiliensis Enolase Is a Surface Protein That Binds Plasminogen and Mediates Interaction of Yeast Forms with Host Cells. Emerging Infections. 10, 1128. 41. Nombela, C.; Gil, C., Chaffin, W.L. (2006). Non-conventional protein secretion in yeast. Trends Microbiol. 14, 15–21. 42. Parente, A.F.; Bailão, A.M.; Borges, C.L.; Parente, J.A.; Magalhães, A.D.; Ricart, C.A.O.; Soares, C.M.A. (2011). Iron availability alters the metabolic status of the pathogenic fungus Paracoccidioides brasiliensis as detected by proteomic assays. PLoS One. 6 (7), 22810. 43. Pancholi, V. & Fischetti, V.A. (1992). A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J. Exp. Med. 176, 415–426. 44. Pitarch, A.; Sánches, M.; Nombela, C.; Gil, C. (2002). Sequentional Fractionation and two- dimensional gel analisys unravels the complexity of dimorphic fungus Candida albicans cell wall proteome. Mol. Cell Proteomics. 1, 967–982. 45. Prados-Rosales, R.; Luque-Garcia, J.L.; Martínez-López, R.; Gil, C.; Di Pietro, A. (2009). The Fusarium oxysporum cell wall proteome under adhesion-inducing conditions. Proteomics 9, 1-15. 46. Restrepo, A. and Jiménez, B.E. (1980). Growth of Paracoccidioides brasiliensis yeast phase in a chemically defined culture medium. J. Clin. Microbiol. 12 (2), 279-81. 80 47. Rezende, T.C.V.; Borges, C.L.; Magalhães, A.D.; Sousa, M.V.; Ricart, C.A.O.; Bailão, A.M.; Soares, C.M.A. (2011). A quantitative view of the morphological phases of Paracoccidioides brasiliensis using proteomics. Journal of Proteomics. 16, 6 - 56. 48. Rodrigues, M.L.; Naykayasu, E.S.; Oliveira, D.L.; Nimrichter, L.; Nosanchuk, J.D.; Almeida, I.C.; Casadevall, A. (2007). Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryotic cell. 17, 58–67. 49. San-Blas, G. (1982). The cell wall of fungal human pathogens: its possible role in host-parasite relationships. Mycopathol. 79 (3), 159-84. 50. Schrettl, M.; Bignell, E.; Kragi, C.; Joechl, C.; Rogers, T.; et al. (2004). Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J. Exp. Med. 200, 1213–1219. 51. Sekyere, E.O.; Dunn, L.L.; Rahmanto, Y.S.; Richardson, D.R. (2006). Role of melanotransferrin in iron metabolism: studies using targeted gene disruption in vivo. Blood. 107 (7), 2599-601. 52. Seo, H.; Chang, Y.; Chung, Y;.Kim, K. (2008). Proteomic analysis of recombinant Saccharomyces cerevisiae upon iron deficiency induced via human H-ferritin production. J. Microbiol Biotechnol. 18, 1368–1376. 53. Shaw, M.M.; Riederer, B.M. (2003). Sample preparation for two-dimensional gel electrophoresis. Proteomics. 3, 1408–1417. 54. Shevchenko, A.; Wilm, M.; Vorm, O.; Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 68 (5), 850–8. 55. Silva, M.G. et al. (2011). The homeostase of iron, copper and zinc in Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gatti: a comparative analysis. Fronties in Microbiology. 2,49. 56. Sutak, R.; Lesuisse, E.; Tchez, J.; Richardson, D.R. (2008). Crusade of iron: iron uptake in eucaryotes and significance for virulence. Trends Microbiol. 16: 262 - 268. 57. Szymanski, C.M. and Wren, B.W. (2005). Protein glycosylation in bacterial mucosal pathogens. Nature. 3, 225 - 237. 58. Tomazzet, P.K.; Cruz, A.H.; Bonfim, S.M.; Soares, C.M.; Pereira, M. (2005). The cell wall of Paracoccidioides brasileinsis: insights from its transriptome. Genet. Mol. Res. 30: 4(2): 309 - 25. 81 59. Villamon, E.; Gozalbo, D.; Martinez, J.P.; Gil, M.L. (1999). Purification of a biologically active recombinant glyceraldehyde 3-phosphate dehydrogenase from Candida albicans. FEMS Microbiol. Lett. 179: 61 - 65. 60. Vitu, E.; Gross, E.; Greenblatt, H.M.; Sevier, C.S.; Kaiser, C.A.; Fass, D.(2008). Yeast Mpd1reveals the structural diversity of the protein disulfide isomerase family. J. Mo.l Biol. 384(3): 631 - 40. 61. Winram, S.B.; Lottenberg, R. (1996). The plasmin-binding protein Plr of group A streptococci is identified as glyceraldehyde-3-phosphat dehydrogenase. Microbiology 142: 2311 - 2320. 62. Winters, M.S.; Spellman, D.S.; Chan, Q.; Gomez, F.J.; Hernandez, M.B.; Catron, B.; Smulian, A.; Neubert, T.A.; Deepe, G.S. (2008). Histoplasma capsulatum proteome response to decreased iron Availability. Proteome Science 6, 33 |
Page generated in 0.0122 seconds