La production d'énergie à partir de biomasse ligno-cellulosique via la technologie de gazéification est une option intéressante dans le contexte énergétique actuel. La combinaison d‘une pyrolyse rapide décentralisée de la biomasse pour produire les bio-huiles, suivie par le transport et le vaporeformage dans des bio-raffineries, est apparue comme l'une des méthodes économiquement les plus viables pour la production de gaz de synthèse (H2+CO). L‘objectif de ce travail est de combler le manque de connaissances concernant les processus de transformation physicochimique de l‘huile de pyrolyse en gaz de synthèse utilisant la gazéification non catalytique dans des réacteurs à flux entrainé. Il s‘agit d‘un processus complexe, mettant en oeuvre la vaporisation, les réactions de craquage thermique avec formation de gaz, de tars et de deux résidus solides : le char et les suies, qui sont des produits indésirables. Ceci est suivi par le reformage des gaz et des tars, ainsi que la conversion du char et des suies. Pour mieux comprendre le processus, la première étape de la gazéification (la pyrolyse), et par la suite l'ensemble du processus (pyrolyse + gazéification) ont été étudiés. L‘étude de la pyrolyse est focalisée sur l‘influence de la vitesse de chauffe, de la température ainsi que de la teneur en cendres dans la bio-huile, sur les rendements en char, tars et gaz. A très grande vitesse de chauffe le rendement en char est inferieur à 1%. Les cendres semblent favoriser les réactions de polymérisation et provoquent la diminution du rendement en gaz. Concernant la gazéification, l'effet de la température sur le rendement et la composition du gaz de synthèse a été étudié. Une augmentation de la température de réaction implique une augmentation du rendement en hydrogène et une conversion très élevée du carbone solide. Un calcul d'équilibre thermodynamique a montré que l'équilibre a été atteint à 1400°C. Finalement les mécanismes de formation et d‘oxydation des suies ont été étudiés expérimentalement sous différentes atmosphères : inerte (pyrolyse), riche en vapeur d‘eau (gazéification) et en présence d‘oxygène (oxydation partielle). Un modèle semi empirique est proposé et validé. Il est fondé sur la chimie détaillée pour décrire les réactions en phase gaz, une seule réaction basée sur la concentration de C2H2 pour décrire la formation des suies et principalement une réaction hétérogène pour décrire l‘oxydation des suies. / Energy production from ligno-cellulosic biomass via gasification technology appears as an attractive option in the current energy context. The combination of decentralized fast pyrolysis of biomass to produce bio-oil, followed by transportation and gasification of bio-oil in bio-refinery has appeared as one of the most economically viable methods for syngas (H2+CO) production. The objective of this work is to bridge the lack of knowledge concerning the physicochemical transformation of bio-oil into syngas using non catalytic steam gasification in entrained flow reactors. This complex process involves vaporization, thermal cracking reactions with formation of gas, tars and two solid residues - char and soot - that are considered as undesirable products. This is followed by steam reforming of gas and tars, together with char and soot conversion. To better understand the process, the first step of gasification (pyrolysis) and thereafter the whole process (pyrolysis + gasification) were studied. The pyrolysis study focused on the influence of the heating rate, the final pyrolysis temperature and the ash content of bio-oil on char, tars and gas yields. At the higher heating rate char yield is smaller than 1%. In addition, ash seems to promote polymerization reactions and causes a decrease of gas yield. Concerning gasification, the effect of temperature on syngas yield and composition was studied. An increase in the reaction temperature implies higher hydrogen yield and higher solid carbon conversion. A thermodynamic equilibrium calculation showed that equilibrium was reached at 1400°C. Finally, the soot formation and oxidation mechanisms were investigated through experiments in three different atmospheres: inert (pyrolysis), rich in steam (gasification) and in the presence of oxygen (partial oxidation). A semi-empirical model was proposed and validated. It is based on detailed chemistry to describe gas phase reactions, a single reaction using C2H2 concentration to describe soot formation and one main heterogeneous reaction to describe soot oxidation.
Identifer | oai:union.ndltd.org:theses.fr/2011INPT0064 |
Date | 05 September 2011 |
Creators | Chhiti, Younes |
Contributors | Toulouse, INPT, Salvador, Sylvain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds