In this thesis, we have evaluated a stochastic Lagrangian model for computing particle deposition rates with prospects to use for atmospheric deposition applications. The model is one-dimensional and models the particle dynamics in the boundary layers near walls and obstacles by simulating the coherent turbulent structures and Brownian motion governing the wall-normal transport. The deposition model is used with a hybrid deterministic/stochastic particle dispersion model governing the dynamics in the turbulent bulk flow. We used a steady-state RANS k-ϵ turbulence model to simulate the turbulent fluid flow in a neutral atmospheric boundary layer (ABL) using the with inflow boundary conditions by Richards & Hoxey (1993). The turbulence model is solved with the SIMPLE algorithm using the OpenFOAM software. The mean-field characteristic of the turbulent flow in the computational domain is exported and used for the particle model. The particle model is a Lagrangian Langevin-type model, consisting of a system of stochastic differential equations. The particle model was solved using a weakly first order a-stable scheme. We evaluated the deposition model by computing the deposition rate for a range of particle sizes and compared our results with collected experimental wind tunnel data. The numerical experiment was done in a computational domain based on the ABL model by Hargreaves & Wright (2007), a rectangular domain with a logarithmic wind profile. We used a particle source near the inflow boundary with an instantaneously release at the initial time. Results showed disagreement with the experimental data and was only valid for medium sized particles. However, time restrictions led to the analysis being cut short and only a single simulation was conducted. A definite conclusion on the suitability of the method could not be made based solely on this single results. Some uncertainties were identified and discussed for further potential work on the evaluation of the method. However, one conclusion was drawn on the performance of the method. The computational cost was concluded to be too high with the first order particle scheme used and higher order schemes is required for any practical use of the method for atmospheric deposition applications.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-481076 |
Date | January 2022 |
Creators | Eriksson, Andreas |
Publisher | Uppsala universitet, Luft-, vatten- och landskapslära |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC F, 1401-5757 ; 22015 |
Page generated in 0.0026 seconds