Due to the recent interest in broadband antennas a microstrip patch antenna was
developed to meet the need for a cheap, low profile, broadband antenna. This antenna
could be used in a wide range of applications such as in the communications industry for
cell phones or satellite communication. Particle Swarm Optimization was used to design
the dual-linear polarization broadband microstrip antenna and impedance matching
network. This optimization method greatly reduced the time needed to find viable
antenna parameters. A dual input patch antenna with over 30% bandwidth in the X-band
was simulated using Ansoft's High Frequency Structural Simulator (HFSS) in
conjunction with Particle Swarm Optimization. A single input and a dual input antenna
was then fabricated. The fabricated antennas were composed of stacked microstrip
patches over a set of bowtie apertures in the ground plane that were perpendicular to one
another. A dual offset microstrip feedline was used to feed the aperture. Two different
layers were used for the microstrip feedline of each polarization. The resulting measured
impedance bandwidth was even wider than predicted. The antenna pattern was measured
at several frequencies over the antenna bandwidth and was found to have good gain,
consistent antenna patterns and low cross polarization.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-3162 |
Date | 15 May 2009 |
Creators | Smith, Christopher Brian |
Contributors | Chang, Kai |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | electronic, application/pdf, born digital |
Page generated in 0.001 seconds