Return to search

Herstellung und Charakterisierung von Kompositmembranen aus seitlich von einer Polymermatrix eingefassten Zeolithpartikeln

Für die hochselektive technische Trennung von Stoffen hält die Natur eine optimale Lösung namens Zeolithe bereit. In dieser Arbeit wurden Zeolith 4A in Form von Partikeln und wenig permeables Polymer in einer Membran kombiniert. Die Partikel lagen dabei in einer Monolage vor und wurden lediglich seitlich vom Polymer eingefasst, sodass sie beide Oberflächen der Polymerschicht durchbrachen. Diese Einbettung zu so genannten Zeolithkompositmembranen erlaubt einen Stofftransport ausschließlich durch die hochselektiven Zeolithpartikel. Die Herstellung und Charakterisierung der Zeolithkompositmembranen stehen im Mittelpunkt der vorliegenden Arbeit.
Für die Membranherstellung kam das Prinzip der partikelassistierten Benetzung einer Wasseroberfläche zum Einsatz. Hierfür wurden die Zeolithpartikel beschichtet und anschließend das unverändert zugängliche Porensystem mittels Thermogravimetrie in Wasseradsorptions-Desorptionsmessungen nachgewiesen. Aus beschichteten Partikeln und passendem Monomer konnten schichtdickenoptimierte Zeolithkompositmembranen hergestellt werden. Es wurde eine Permeabilität P für Wasserdampf von 49 barrer festgestellt, während die Gase Stickstoff und Sauerstoff keinen Transportnachweis zuließen (P < 0,03 barrer). Daraus ergeben sich Selektivitäten von über 1600.
Die Durchlässigkeit für Wasser beweist ein offenes Porensystem, die Impermeabilität für Stickstoff und Sauerstoff deutet auf eine sehr geringe Defektdichte hin, was beste Voraussetzungen für Trennmembranen darstellt.
Das Herstellungsprinzip soll als Vorlage für die Präparation maßgeschneiderter Kompositmembranen mit wählbarer Porengröße dienen. Vergleiche zu konventionellen Zeolithmembranen belegen, dass die partikelassistierte Benetzung die Methode der Wahl ist, partikelförmiges hochselektives Material optimal einzubetten, ohne die begehrten Permeationseigenschaften zu beeinträchtigen. / An optimal material for highly selective separation processes can be found in zeolites. We prepared composite membranes composed of zeolite 4A particles and a polymer of low permeability. The particles formed a dense monolayer which were embedded into the polymer sheet in such a way that each particle prenetrates both the top and the bottom surface of the sheet. Only this embedding offffers a transport through the highly selective particles exclusively. This work focusses on these so called zeolite composite membranes, on their preparation and characterization.
The preparation of the membranes was done via particle assisted wetting on a water surface. Therefore the zeolite particles were coated by a suitable silane agent and a blocking of the pore openings by the coating process was disproved by water adsorption-desorption measurements via TGA. Using the coated particles and a suitable monomer composite membranes could be formed and the optimum thickness was found. The membranes were permeable for water vapor (permeability P = 49 barrer), but impermeable for nitrogen and oxygene (P < 0,03 barrer (detection limit)). This results in a selectivity of above 1600.
The permeability for water indicates that the molecules are transported through the zeolite channels. The impermeability for nitrogene and oxygene indicates a very low amount of defects. Furthermore the composite nature of the membrane reduces brittleness thus rendering it a promising candidate for separation technology with tailoring the pore size.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-84896
Date23 March 2012
CreatorsKiesow, Ina
ContributorsTechnische Universität Chemnitz, Fakultät für Naturwissenschaften, Prof. Dr. Werner Andreas Goedel, Prof. Dr. Werner Andreas Goedel, Prof. Dr. Michael Mehring
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf, text/plain, application/zip

Page generated in 0.0025 seconds