A l'aide de quelques exemples illustratifs, des pistes sont évoquées pour combiner les méthodes polynomiales (algèbre, géométrie algébrique) et l'optimisation convexe (inégalités matricielles linéaires, LMI) dans le but de développer des outils numériques de résolution de problèmes basiques en automatique, et en particulier pour la commande robuste des systèmes linéaires. Dans le chapitre 2, nous évoquons les liens étroits entre ensembles semi-algébriques convexes et LMI,ainsi que la notion sous-jacente de convexité cachée remettant en question la traditionnelle dichomotime entre convexité et non-convexité. Dans le chapitre 3, nous décrivons les méthodes classiques permettant d'approcher les problèmes de commande linéaire robuste à l'aide des polynômes, en insistant sur l'interaction entre algèbre et géométrie. Le chapitre 4 mentionne les différents outils logiciels développés dans ce cadre. Finalement le chapitre 5 contient quelques suggestions d'axes de recherche cohérents avec ces développements.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00246118 |
Date | 17 December 2007 |
Creators | Henrion, Didier |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | habilitation ࠤiriger des recherches |
Page generated in 0.0019 seconds