Return to search

The Type 1 Fimbrial Adhesin Mediates the Interaction of Adherent-Invasive Escherichia coli with the Host

<p>Crohn’s Disease is a chronic inflammatory bowel disease characterized by an overzealous immune response to a microbial trigger in genetically susceptible individuals. Although this microbial trigger is unknown, <em>Escherichia coli</em> with adherent and invasive properties (Adherent-Invasive <em>Escherichia coli</em>, AIEC) is preferentially enriched in a proportion of Crohn’s Disease patients. AIEC can adhere to and invade intestinal epithelial cells and replicate intracellularly within epithelial cells and macrophages <em>in vitro</em>. One important colonization factor expressed by AIEC is the type 1 fimbrial adhesin protein FimH. FimH mediates colonization of CEABAC10 transgenic mice and can bind several host cell receptors including the macrophage receptor CD48 <em>in vitro</em> indicating a potential role for FimH in macrophage interaction. However, it was not known whether FimH contributed to phagocytosis of AIEC or colonization of wild-type mice. Here we show that FimH enhances early intracellular AIEC levels <em>in vitro</em> and colonization <em>in vivo</em>. We found that deletion of <em>fimH</em> may reduce intracellular AIEC burden at 2 hours post-infection and that this effect was modulated by bacteria opsonisation. Using a competitive index assay, we show that a Δ<em>fimH</em> mutant is unable to chronically colonize CD-1 mice at the same levels as the parental strain. Our results demonstrate that FimH is an important AIEC colonization factor and may increase interaction with macrophages. Identifying factors such as FimH which contribute to colonization and persistence will further our understanding of AIEC survival strategies within the host. Development of therapeutics targeting FimH may provide a means to reduce harmful bacteria overgrowth particularly after surgical intervention.</p> / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/12402
Date10 1900
CreatorsWallar, Lauren E.
ContributorsCoombes, Brian K., Dawn Bowdish, Karen Mossman, Biochemistry
Source SetsMcMaster University
Detected LanguageEnglish
Typethesis

Page generated in 0.0021 seconds