Return to search

Effekttoppsreducering via elbilsbatterier : Dess potential vid vinterförhållanden i Halmstad år 2030 / Power peak reduction via electric car batteries : Its potential during winter conditions in Halmstad year 2030

A transition phase is taking place in Sweden, where the goal is to become a completely climate neutral country by 2045. The transport sector currently accounts for a third of fossil emissions in Sweden, while the transport sector also has the greatest potential to become fossil-free through, forexample, a comprehensive electrification. Bottlenecks in the grid is a challenge that Sweden faces where the existing ability to send powerthrough the country is already highly utilized. Battery storage can partly be the solution to this problem and also support the future needs that a further electrification of the transport sector may cause. Battery storage can, however, be both expensive and require a lot of space. To avoid this, the mobile battery storage that is available in electric cars can be used to convey power to the grid based on need. The technology that performs this bidirectional charging is called V2G (vehicle-to-grid) and has enormous theoretical potential. The number of electric cars in Sweden has increased by 82% duringthe year 2020, which provides good conditions for continuing to investigate the potential for V2G. Previous studies have shown challenges with the technology. The main issues pointed out have been profitability, winter conditions and battery wear, all of which are taken into account in this study. As in all of Sweden, Halmstad needs to plan for its electrification of the transport sector and load consequences on the grid. This study carries out a combined qualitative and quantitative case study that examines how a future electric car fleet can affect Halmstad's local grid. With data from HEM Nät from a winter week that will correspond to extreme conditions for the grid, a model has been developed in Excel to test different proposed scenarios. What is analyzed is how V2G can work in practice depending on where and when charging takes place, and whether power regulation can be profitable for both private individuals and network operator. Results show that some form of power regulation will be needed in the future to deal with the consequences of uncontrolled electric car charging with an ever-larger electric car fleet, and that V2G may be an option. Despite the winter climate and consideration for battery wear, a significant power peak reduction can be achieved if sufficient participation is attained and a good control strategy is found. Financial analysis shows a negative outcome for private individuals who use V2G. The utility services that is provided can on the other hand reduce costs for the network operator through load balancing incentives and reduced subscriptions to overlying networks. This in turn can enable an interest in network operators to introduce local incentives for private individuals' involvement.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-44590
Date January 2021
CreatorsHolmblad, Oskar, Olsson, Andreas
PublisherHögskolan i Halmstad, Akademin för företagande, innovation och hållbarhet, Högskolan i Halmstad, Akademin för företagande, innovation och hållbarhet
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds