Cette thèse se concentre sur la préparation et l'étude des composites élastomères chargés avec des particules lamellaires et des liquides ioniques. Ces composites sont caractérisés par des propriétés mécaniques améliorées, une diminution du gonflement par les solvants, une faible perméabilité aux gaz ainsi que par une amélioration de la conductivité ionique. Les propriétés de structure et de surface différentes des charges lamellaires, telles que le rapport d'aspect des particules, la surface spécifique et l'activité de surface ont été analysées comme les facteurs impactant le renforcement du caoutchouc nitrile (NBR) et du caoutchouc nitrile carboxylé (XNBR). Une attention particulière a été portée aux systèmes XNBR contenant des hydroxydes doubles lamellaires (MgAI-HDL), qui varient en fonction du rapport Mg / Al et de morphologie de particules. L'application simultanée de MgAI-HDL en tant que charge et en tant qu'agent de réticulation dans XNBR ne fournit pas uniquement un produit écologique sans oxyde de zinc mais également un composite élastomère ionique avec de meilleures propriétés mécaniques, de barrière et de transparence. Cette thèse considère également les applications potentielles des liquides ioniques en tant qu'additifs multifonctionnels dans les composites élastomères afin d'obtenir une bonne dispersion des charges minérales dans une matrice polymère ainsi qu'une amélioration de la conductivité ionique des matériaux composites. La concentration optimale et le type de liquides ioniques ont été sélectionnés pour obtenir un bon compromis entre les propriétés mécaniques et la conductivité des matériaux composites de caoutchouc / This thesis focused on the preparation and the study of elastomer composites filled with layered fillers with improved mechanical properties, decreased swelling in solvents, increased UV stability and reduced gas permeability. The layered minerals were investigated not only in terms of their use as reinforcing fillers for rubbers but also as crosslinking agents, gas barrier and UV stability enhancers. The layered fillers tested belong to a class of cationic clays (natural and synthetic hectorite), anionic clays (hydrotalcites or magnesium aluminum layered double hydroxides MgAI-LDHs) and graphene-based materials. Different structural and surface properties of layered fillers were investigated as factors impacting the reinforcement of acrylonitrile-butadiene rubber (NBR) and carboxylated acrylonitrile-butadiene rubber (XNBR). Special attention has been devoted to the XNBR systems containing MgAI-LDHs varying in Mg / AI ratios, layers aspect ratios and particles morphologies. It was reported that the simultaneous application of MgAI-LDH as a filler and as a crosslinking agent in XNBR provides not only environmentally friendly, zinc-oxide free product but also ionic elastomer composite with improved mechanical, barrier and transparent properties. This thesis considers also the potential application of imidazolium ionic liquids as dispersing agents in rubber matrix, plasticizers and ionic conductivity enhancers. The optimal concentration and type of ionic liquids were selected for obtaining a good compromise between mechanical and conductivity properties of rubber composites
Identifer | oai:union.ndltd.org:theses.fr/2014LYO10281 |
Date | 02 December 2014 |
Creators | Laskowska, Anna |
Contributors | Lyon 1, Uniwersytet łódzki, Boiteux, Gisèle, Anatoli, Serghei, Zaborski, Marian, Lipińska, Magdalena |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds