Return to search

Process reproducibility of perovskite deposition

Organisch-anorganische Perowskite sind attraktiv für Dünnschichtsolarzellen. Die Übertragung laborbasierter Herstellungsverfahren, typischerweise Rotationsbeschichtung, auf industrielle Prozesse erfordert ein tiefgehendes Verständnis der physikalisch-chemischen Auswirkungen auf die Schichtqualität.
Diese Arbeit zeigt, dass die Effizienz-Reproduzierbarkeit von Perowskit-Solarzellen (PSCs) nicht primär durch Unterschiede zwischen Laboren, sondern durch interne Prozessschwankungen beeinflusst wird. Verglichen wurden PSCs mit PEDOT und PTAA als Lochleiter auf den beiden Perowskiten, MAPI und 3CAT.
PEDOT-basierte PSCs zeigten neben geringerer Reproduzierbarkeit eine niedrigere Effizienz, bedingt durch Voc- und FF-Verluste, schlechtere energetische Angleichung und morphologische Grenzflächenprobleme. Im Vergleich zu 3CAT, war die Effizienz von MAPI-basierten Zellen schlechter reproduzierbar, was durch eine stärkere Abhängigkeit der MAPI-Schichten von Prozessschwankungen erklärt werden kann.
Die Anwendung eines Anti-Lösungsmittel-Tropfens (AS-Tropfen) während des in dieser Rotationsbeschichtungsprozesses beeinflusst die Morphologie und Effizienz der Solarzellen erheblich. Das optimale Zeitfenster für den AS-Tropfen ist für MAPI (~10 s) kleiner als für 3CAT (~50 s). Ein falsches Timing führt zu morphologischen Hohlräumen und vermindert die Effizienz.
Optische In-situ-Studien zeigten, dass der AS-Tropfen vor Beginn der natürlichen Perowskit-Kristallisation appliziert werden sollte. Für MAPI beginnt diese nach 20 Sekunden, für 3CAT nach 100 Sekunden. Ein zu später AS-Tropfen reduziert die Verfügbarkeit von Lösungsmittel für die Rekristallisation und verschlechtert die Morphologie der Perowskit-Phase. 3CAT toleriert zeitliche Variationen besser, da es während der natürlichen Kristallisation sowohl lösungsmittelhaltige Vorphasen als auch Perowskit-Phasen bildet, während MAPI hauptsächlich lösungsmittelhaltige Vorphasen bildet, was die Prozessanfälligkeit erhöht. / Organic-inorganic perovskites are promising materials for thin-film solar cells, with potential for industrial-scale production through scalable manufacturing. The transition from laboratory-based spin-coating to scalable processes requires understanding the factors affecting perovskite film quality. High-performance reproducibility is essential for commercializing perovskite solar cells (PSCs), currently challenging for certain perovskite combinations.
Reproducibility issues are evident from performance variations in published PSC results fabricated from different laboratories. Even within a single laboratory, process fluctuations can lead to efficiency irreproducibility, as this study shows. Different PSC stack combinations were compared using two hole conductors, PEDOT and PTAA, with two perovskite compositions, MAPI and 3CAT. PEDOT solar cells showed low reproducibility and lower efficiency due to poor energetic alignment and morphological issues. MAPI and 3CAT with PTAA achieved higher efficiencies. However, MAPI is more sensitive to process variations, leading to lower reproducibility.
This hypothesis is supported by in-situ measurements, which show that the timinng window for the addition of an anti-solvent drip (AS-drip) during spin-coating is narrower for MAPI (~10 s) than for 3CAT (~50 s). AS-drip outside this window causes morphological voids, reducing efficiency. The optical in-situ studies show that AS-drip timing is crucial: crystallization onset occurs earlier for MAPI (20s) than for 3CAT (100s). Late AS-drip results in solvate phase formation, reducing solvent availability and negatively impacting morphology. MAPI forms solvate exclusively during crystallization, while 3CAT forms both solvate and perovskite phases, increasing tolerance to timing variations.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/30063
Date27 September 2024
CreatorsHirselandt, Katrin
ContributorsUnger, Eva, List-Kratochvil, Emil J.W., Herzig, Eva M.
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageGerman
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY 4.0) Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/

Page generated in 0.0018 seconds