Return to search

T-Surfaces in the Affine Grassmannian

In this thesis we examine singularities of surfaces and affine Schubert varieties in the affine Grassmannian $mathcal{G}/mathcal{P}$ of type $A^{(1)}$, by considering the action of a particular torus $widehat{T}$ on $mathcal{G}/mathcal{P}$. Let $Sigma$ be an irreducible $widehat{T}$-stable surface in $mathcal{G}/mathcal{P}$ and let $u$ be an attractive $widehat{T}$-fixed point with $widehat{T}$-stable affine neighborhood $Sigma_u$.
We give a description of the $widehat{T}$-weights of the tangent space $T_u(Sigma)$ of $Sigma$ at $u$, give some conditions under which $Sigma$ is nonsingular at $u$, and provide some explicit criteria for $Sigma_u$ to be normal in terms of the weights of $T_u(Sigma)$. We will also prove a conjecture regarding the singular locus of an affine Schubert variety in $mathcal{G}/mathcal{P}$. / Mathematics

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:AEU.10048/1585
Date11 1900
CreatorsCheng, Valerie
ContributorsKuttler, Jochen (Mathematical and Statistical Sciences), Chernousov, Vladimir (Mathematical and Statistical Sciences), Pianzola, Arturo (Mathematical and Statistical Sciences), Penin, Alexander (Physics)
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_US
Detected LanguageEnglish
TypeThesis
Format233923 bytes, application/pdf

Page generated in 0.0018 seconds