Spelling suggestions: "subject:"affine grassmannian"" "subject:"affine grassmannians""
1 |
Matrix Schubert varieties for the affine GrassmannianBrunson, Jason Cory 03 February 2014 (has links)
Schubert calculus has become an indispensable tool for enumerative geometry. It concerns the multiplication of Schubert classes in the cohomology of flag varieties, and is typically conducted using algebraic combinatorics by way of a polynomial ring presentation of the cohomology ring. The polynomials that represent the Schubert classes are called Schubert polynomials.
An ongoing project in Schubert calculus has been to provide geometric foundations for the combinatorics. An example is the recovery by Knutson and Miller of the Schubert polynomials for finite flag varieties as the equivariant cohomology classes of matrix Schubert varieties. The present thesis is the start of a project to recover Schubert polynomials for the Borel-Moore homology of the (special linear) affine Grassmannian by an analogous process. This requires finitizing an affine Schubert variety to produce a matrix affine Schubert variety. This involves a choice of ``window'', so one must then identify a class representative that is independent of this choice. Examples lead us to conjecture that this representative is a k-Schur function. Concluding the discussion is a preliminary investigation into the combinatorics of Gröbner degenerations of matrix affine Schubert varieties, which should lead to a combinatorial proof of the conjecture. / Ph. D.
|
2 |
T-Surfaces in the Affine GrassmannianCheng, Valerie 11 1900 (has links)
In this thesis we examine singularities of surfaces and affine Schubert varieties in the affine Grassmannian $mathcal{G}/mathcal{P}$ of type $A^{(1)}$, by considering the action of a particular torus $widehat{T}$ on $mathcal{G}/mathcal{P}$. Let $Sigma$ be an irreducible $widehat{T}$-stable surface in $mathcal{G}/mathcal{P}$ and let $u$ be an attractive $widehat{T}$-fixed point with $widehat{T}$-stable affine neighborhood $Sigma_u$.
We give a description of the $widehat{T}$-weights of the tangent space $T_u(Sigma)$ of $Sigma$ at $u$, give some conditions under which $Sigma$ is nonsingular at $u$, and provide some explicit criteria for $Sigma_u$ to be normal in terms of the weights of $T_u(Sigma)$. We will also prove a conjecture regarding the singular locus of an affine Schubert variety in $mathcal{G}/mathcal{P}$. / Mathematics
|
3 |
T-Surfaces in the Affine GrassmannianCheng, Valerie Unknown Date
No description available.
|
4 |
A Combinatorially Explicit Relative Möbius Function on Affine Grassmannians and a Proposal for an Affine Infinite Symmetric GroupLugo, Michael Ruben 09 May 2019 (has links)
For an affine Weyl group W, we explicitly determine the elements for which the Möbius function of the subposet of affine Grassmannians under the Bruhat order is non-zero by utilizing the quantum Bruhat graph of the classical Weyl group associated to W . Then we examine embedding stable and consistent statistics on the affine Weyl group of type A which permit the definition of an affine infinite symmetric group. / Doctor of Philosophy / Similar to the integers, there are groups that have both an infinite number of elements and also a way to partially order those elements. With a partial ordering, we can consider the interval between two elements. When we make a function that sums over an interval of elements, then we can invert the function by using something called the Mӧbius function. For many groups, the Mӧbius function is extremely unpredictable and calculating the inverse may require us to consider an infinite number of elements. In this paper, we focus on groups called affine Weyl groups, which are very useful in algebraic geometry. It turns out that most elements in these groups have a very predictable pattern in their Mӧbius functions which only considers a finite number of elements. The first part of this paper gives very simple rules for calculating it. The second part of this paper focuses on a special type of affine Weyl group: the affine symmetric groups. We provide an attempt at defining a large parent group, which we call the affine infinite symmetric group, that contains all the other affine symmetric groups.
|
5 |
Pureté des fibres de Springer affines pour GL_4 / Purity of affine Springer fiber for GL_4Chen, Zongbin 05 December 2011 (has links)
La thèse consiste de deux parties. Dans la première partie, on montre la pureté des fibres de Springer affines pour $\gl_{4}$ dans le cas non-ramifié. Plus précisément, on construit une famille de pavages non standard en espaces affines de la grassmannienne affine, qui induisent des pavages en espaces affines de la fibre de Springer affine. Dans la deuxième partie, on introduit une notion de $\xi$-stabilité sur la grassmannienne affine $\xx$ pour le groupe $\gl_{d}$, et on calcule le polynôme de Poincaré du quotient $\xx^{\xi}/T$ de la partie $\xi$-stable $\xxs$ par le tore maximal $T$ par une processus analogue de la réduction de Harder-Narasimhan. / This thesis consists of two parts. In the first part, we prove the purity of affine Springer fibers for $\gl_{4}$ in the unramified case. More precisely, we have constructed a family of non standard affine pavings for the affine grassmannian, which induce an affine paving for the affine Springer fiber. In the second part, we introduce a notion of $\xi$-stability on the affine grassmannian $\xx$ for the group $G=\gl_{d}$, and we calculate the Poincaré polynomial of the quotient $\xx^{\xi}/T$ of the stable part $\xxs$ by the maximal torus $T$ by a process analogue to the Harder-Narasimhan reduction.
|
Page generated in 0.0753 seconds