Specialized cells of the innate immune system, such as macrophages, employ lysosomal enzymes, together with cationic peptides and reactive oxygen intermediates, to eliminate invading microorganisms ensnared within phagosomes. The effectiveness of this impressive armamentarium is potentiated by the acid pH generated by the vacuolar-type ATPase (V-ATPase). The determinants of the luminal pH of phagosomes and of the lysosomes they fuse with are not completely understood, but the V-ATPase is known to be electrogenic and net accumulation of protons requires charge compensation. For this reason, counter-ion pathways are thought to serve a central role in the control of acidification. It has generally been assumed that a parallel anion influx accompanies proton pumping to dissipate the voltage that tends to build up. In fact, impaired chloride channel activity in cystic fibrosis has been proposed to underlie the defective phagolysosome acidification and microbial killing reported in lung macrophages. In the first part of this thesis, I devised methods to dialyze the lumen of lysosomes in intact cells, while monitoring lysosomal pH, in order to assess the individual contribution of counter-ions to acidification. Surprisingly, anions were found to be completely dispensable for proton pumping, whereas the presence of permeant cations in the lysosomal lumen was essential. Accordingly, defects in lysosomal anion permeability cannot explain the impaired microbicidal capacity of phagocytes in cystic fibrosis. Even though counter-ion permeation pathways exist, dissipation of the electrical contribution of the V-ATPase may not be complete. If present, a transmembrane potential would alter the rate and extent of proton accumulation in phagosomes and lysosomes. However, no estimates of the voltage across the phagosomes were available. To overcome this deficiency, in the second part of this thesis, I describe a noninvasive procedure to estimate the voltage across the phagosome using fluorescence resonance energy transfer. This novel approach, in combination with organellar pH measurements, demonstrated that proton pumping is not limited by counter-ion permeability.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/17486 |
Date | 30 July 2009 |
Creators | Steinberg, Benjamin Ethan |
Contributors | Grinstein, Sergio |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0016 seconds