• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 4
  • 1
  • Tagged with
  • 19
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Altered phagocyte function precedes death in polymicrobial sepsis

Chiswick, Evan L. 22 January 2016 (has links)
Sepsis is an immunological condition defined by a pathogen inducing the Systemic Inflammatory Response Syndrome (SIRS), which itself is a clinical diagnosis involving temperature, heart rate, respiration, and white blood cell (WBC) count. Our lab uses Cecal Ligation and Puncture (CLP) to induce polymicrobial sepsis in mice, with a mortality rate of 50 percent. Previous research in our lab has demonstrated that the plasma levels of IL-6 collected six hours after the start of sepsis can be used to predict which mice will live (Live-P) and which mice will die (Die-P) during the acute phase (<5 days post CLP). This predictive tool enables stratification of mice prior to mortality to determine immunological differences between groups. With this approach it was found that both Live-P and Die-P mice have equivalent bacterial burden and phagocyte recruitment within 6 hours of CLP. Yet by 24 hours, Die-P mice have increased bacterial burden while recruiting more phagocytes than Live-P. This suggested a phagocytic impairment. This study reproduced the aforementioned findings and subsequently determined that Die-P peritoneal phagocytes kill fewer bacteria than Live-P. This bactericidal deficit was associated with multiple cellular defects. The reduced cellular function included: decreased phagocytosis, decreased phagosomal acidification, and decreased generation of reactive oxygen species (ROS). All of these are integral components of the bacterial killing process. Furthermore, it was found that this deficit was due to cellular suppression and not to cellular exhaustion. The study of phagocytic function was then extended to the bone marrow, a source of phagocytes, and to the peripheral blood. Die-P bone marrow phagocytes showed increased phagocytic activity despite a similar capacity to respond to bacteria as Live-P. Additionally, Die-P bone marrow phagocytes were found to express higher levels CD11b, a marker of activation. Conversely, Die-P peripheral blood phagocytes expressed higher levels of activation markers while exhibiting decreased phagocytic functions. This study then recapitulated the phagocytic dysfunction of septic cells with naïve healthy cells. A surge in pro and anti-inflammatory mediators is a hallmark of sepsis, with Die-P mice producing a significantly larger surge. Naïve phagocytes were incubated with plasma or peritoneal fluid from Live-P and Die-P mice and it was found that Die-P fluids significantly compromised the phagocytic activity of naïve phagocytes. These studies collectively suggest that mortality from CLP induced sepsis is due to failure to kill bacteria and that differential production of inflammatory mediators contributes to the differences in phagocytic function.
2

A Biophysical Characterization of Phagolysosome Acidification

Steinberg, Benjamin Ethan 30 July 2009 (has links)
Specialized cells of the innate immune system, such as macrophages, employ lysosomal enzymes, together with cationic peptides and reactive oxygen intermediates, to eliminate invading microorganisms ensnared within phagosomes. The effectiveness of this impressive armamentarium is potentiated by the acid pH generated by the vacuolar-type ATPase (V-ATPase). The determinants of the luminal pH of phagosomes and of the lysosomes they fuse with are not completely understood, but the V-ATPase is known to be electrogenic and net accumulation of protons requires charge compensation. For this reason, counter-ion pathways are thought to serve a central role in the control of acidification. It has generally been assumed that a parallel anion influx accompanies proton pumping to dissipate the voltage that tends to build up. In fact, impaired chloride channel activity in cystic fibrosis has been proposed to underlie the defective phagolysosome acidification and microbial killing reported in lung macrophages. In the first part of this thesis, I devised methods to dialyze the lumen of lysosomes in intact cells, while monitoring lysosomal pH, in order to assess the individual contribution of counter-ions to acidification. Surprisingly, anions were found to be completely dispensable for proton pumping, whereas the presence of permeant cations in the lysosomal lumen was essential. Accordingly, defects in lysosomal anion permeability cannot explain the impaired microbicidal capacity of phagocytes in cystic fibrosis. Even though counter-ion permeation pathways exist, dissipation of the electrical contribution of the V-ATPase may not be complete. If present, a transmembrane potential would alter the rate and extent of proton accumulation in phagosomes and lysosomes. However, no estimates of the voltage across the phagosomes were available. To overcome this deficiency, in the second part of this thesis, I describe a noninvasive procedure to estimate the voltage across the phagosome using fluorescence resonance energy transfer. This novel approach, in combination with organellar pH measurements, demonstrated that proton pumping is not limited by counter-ion permeability.
3

Phagosome Maturation: Aging with pH, Lysosome-associated membrane proteins, and Cholesterol; while staying young with Burkholderia cenocepacia

Huynh, Kassidy 03 March 2010 (has links)
Phagocytosis is an innate immune response that is paramount in the clearance of pathogenic particles. Recognition of target particles by phagocytic receptors expressed on phagocytes induces modifications in the underlying actin cytoskeleton to form pseudopods that encircle and internalize the target particle into a membrane bound organelle called the phagosome. The nascent phagosome undergoes a maturation sequence that is characterized by substantial remodeling of the membrane and its luminal contents through interactions with components of the endocytic pathway, culminating in an acidic and hydrolytic organelle capable of digesting and elminating pathogens. Phagosome maturation is a complicated pathway that involves many protein and lipid signaling molecules. Several factors that influence phagosome maturation particularly the participation of pH, lysosome-associated membrane proteins-1 and –2, cholesterol, in addition to the survival and escape mechanisms used by, Burkholderica cenocepacia were explored. All three tenets are essential for phagosome maturation, although each factor has different mechanistic consequences. Acidification alters Rab5 activation, while ablation of LAMPs and accumulation of cholesterol interferes with various aspects of Rab 7 turnover in phagosomes and/or endosome membranes. Moreover, Burkholderia cenocepacia, an intracellular pathogen, inactivates Rab7 on phagosome membranes from within the vacuole lumen. Herein, mechanisms that govern phagosome maturation are explored and several molecules are added to the long list of essential players in this complicated pathway.
4

A Biophysical Characterization of Phagolysosome Acidification

Steinberg, Benjamin Ethan 30 July 2009 (has links)
Specialized cells of the innate immune system, such as macrophages, employ lysosomal enzymes, together with cationic peptides and reactive oxygen intermediates, to eliminate invading microorganisms ensnared within phagosomes. The effectiveness of this impressive armamentarium is potentiated by the acid pH generated by the vacuolar-type ATPase (V-ATPase). The determinants of the luminal pH of phagosomes and of the lysosomes they fuse with are not completely understood, but the V-ATPase is known to be electrogenic and net accumulation of protons requires charge compensation. For this reason, counter-ion pathways are thought to serve a central role in the control of acidification. It has generally been assumed that a parallel anion influx accompanies proton pumping to dissipate the voltage that tends to build up. In fact, impaired chloride channel activity in cystic fibrosis has been proposed to underlie the defective phagolysosome acidification and microbial killing reported in lung macrophages. In the first part of this thesis, I devised methods to dialyze the lumen of lysosomes in intact cells, while monitoring lysosomal pH, in order to assess the individual contribution of counter-ions to acidification. Surprisingly, anions were found to be completely dispensable for proton pumping, whereas the presence of permeant cations in the lysosomal lumen was essential. Accordingly, defects in lysosomal anion permeability cannot explain the impaired microbicidal capacity of phagocytes in cystic fibrosis. Even though counter-ion permeation pathways exist, dissipation of the electrical contribution of the V-ATPase may not be complete. If present, a transmembrane potential would alter the rate and extent of proton accumulation in phagosomes and lysosomes. However, no estimates of the voltage across the phagosomes were available. To overcome this deficiency, in the second part of this thesis, I describe a noninvasive procedure to estimate the voltage across the phagosome using fluorescence resonance energy transfer. This novel approach, in combination with organellar pH measurements, demonstrated that proton pumping is not limited by counter-ion permeability.
5

Phagosome Maturation: Aging with pH, Lysosome-associated membrane proteins, and Cholesterol; while staying young with Burkholderia cenocepacia

Huynh, Kassidy 03 March 2010 (has links)
Phagocytosis is an innate immune response that is paramount in the clearance of pathogenic particles. Recognition of target particles by phagocytic receptors expressed on phagocytes induces modifications in the underlying actin cytoskeleton to form pseudopods that encircle and internalize the target particle into a membrane bound organelle called the phagosome. The nascent phagosome undergoes a maturation sequence that is characterized by substantial remodeling of the membrane and its luminal contents through interactions with components of the endocytic pathway, culminating in an acidic and hydrolytic organelle capable of digesting and elminating pathogens. Phagosome maturation is a complicated pathway that involves many protein and lipid signaling molecules. Several factors that influence phagosome maturation particularly the participation of pH, lysosome-associated membrane proteins-1 and –2, cholesterol, in addition to the survival and escape mechanisms used by, Burkholderica cenocepacia were explored. All three tenets are essential for phagosome maturation, although each factor has different mechanistic consequences. Acidification alters Rab5 activation, while ablation of LAMPs and accumulation of cholesterol interferes with various aspects of Rab 7 turnover in phagosomes and/or endosome membranes. Moreover, Burkholderia cenocepacia, an intracellular pathogen, inactivates Rab7 on phagosome membranes from within the vacuole lumen. Herein, mechanisms that govern phagosome maturation are explored and several molecules are added to the long list of essential players in this complicated pathway.
6

Mécanisme d'interférence de la conversion du phagosome par Coxiella burnetii / Interference of the phagosomal conversion by Coxiella burnetii

Boucherit, Nicolas 02 December 2013 (has links)
Pour survivre et se multiplier dans leurs cellules hôtes les bactéries intracellulaires ont élaboré divers mécanismes d'échappement à la réponse immunitaire. L’altération du trafic intracellulaire est une des stratégies utilisée par ces agents pathogènes. Ainsi Coxiella burnetii, bactérie intracellulaire stricte responsable chez l’homme de la fièvre Q, bloque la maturation du phagosome afin de résider et se multiplier dans un compartiment incapable de fusionner avec les lysosomes. Ce défaut de fusion est associé à la virulence bactérienne. Pour analyser le défaut de maturation du phagosome de C. burnetii, j’ai étudié le rôle du lipopolysaccharide (LPS) de C. burnetii dans le trafic intracellulaire de cette bactérie. J’ai montré que le LPS de C. burneti, unique par sa structure, ne permet pas l’activation de la MAPKinase p38α, entrainant un défaut dans le recrutement du complexe HOPS (homotypic fusion and vacuole protein sorting complex) nécessaire à la conversion phagosomale. J’ai en effet montré que le recrutement du complexe HOPS requiert la phosphorylation de la protéine Vps (vacuolar protein sorting) 41. La transfection de macrophages permettant la surexpression d’un activateur de p38 et l’utilisation de mutants phosphomimétiques de Vps41 ont montré une restauration de la conversion phagosomale. Il apparaît ainsi que la MAPK-p38α et son dialogue avec Vps41 jouent un rôle central dans la maturation du phagosome de C. burnetii en phagolysosome. L’utilisation de la structure atypique de son LPS permet ainsi à C. burnetii de se soustraire à la réponse protectrice de l'hôte. / To survive and replicate in their host, microbes have evolved several strategies to hijack the microbicidal properties of the immune cells. C. burnetii, the q fever agent, survive and replicate in macrophages through the alteration of the phago-lysosome biogenesis. To further analyze the nature of the defect phagosome maturation of C. burnetii, I studied the role of lipopolysaccharide (LPS) of C. burnetii in the intracellular trafficking of the bacteria. The LPS is unable to activate the p38α MAPKinase, which explains that the virulent bacteria are not directed to a degradative compartment . The lack of activation of the p38α MAPKinase , which involves a commitment TLR4 antagonist by LPS, has the effect of preventing the recruitment of the HOPS complex ( homotypic fusion and vacuole protein sorting complex) , a complex require for the phagosomal conversion. I have shown that the recruitment of HOPS requires phosphorylation of protein Vps (vacuolar protein sorting) 41. Transfection of macrophages by an activator of p38 and using phosphomimétiques mutants VPS41 showed restoration of phagosome maturation. It thus appears that the p38α MAPK and his dialogue with VPS41 play a central role in phagosome maturation of C. burnetii in the phagolysosome. Use of the unique structure of the LPS allows C. burnetii to evade the protective response of the host.
7

Modulation des radeaux lipidiques et des propriétés de fusion des phagosomes par le lipophosphoglycane du parasite intracellulaire Leishmania donovani

Dermine, Jean-François January 2004 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
8

Ubiquitylation regulates vesicle trafficking and innate immune responses on the phagosome of inflammatory macrophages

Bilkei-Gorzo, Orsolya January 2018 (has links)
Macrophages are sentinels present in most tissues of the body, where they recognise and respond to biological dangers. Recognition and uptake of particles is mediated through phagocytic receptors which upon activation induce appropriate responses. These responses need to be tightly regulated in order to destroy pathogens but prevent uncontrolled inflammation. Phagocytosis is an evolutionarily conserved process required for host defence and homeostasis. During phagocytosis, particles are recognised by cell surface receptors that trigger rearrangement of the actin cytoskeleton and internalization of the bound particle into a de novo, membranous organelle known as the phagosome. Regulation of phagocytosis and phagosome maturation can be achieved through changes in transcription/translation and differential recruitment of proteins but also through their non-translational modifications. Here I explored the role of ubiquitylation in the phagosome biogenesis of Interferon-gamma (IFN-ɣ) activated macrophages. Ubiquitylation is a diverse, reversible post-translational modification which is not only involved in protein degradation but also in vesicle trafficking and immune signalling. My data shows that phagosomes are enriched in polyubiquitylation, which is further enhanced by IFN-ɣ. I applied a targeted AQUA peptide approach by which we quantified ubiquitin chain linkage peptides from phagosome samples by PRM. This data shows that all chain linkages apart from M1/linear chains are present on phagosomes. Furthermore, IFN-ɣ activation enhanced K11, K48 and K63 chains significantly. In order to identify the molecular function of this polyubiquitylation, I characterized the ubiquitinome of phagosomes of IFN-γ activated macrophages and can demonstrate that ubiquitylation is preferentially attached to proteins involved in vesicle trafficking, thereby delaying fusion with late endosomes and lysosomes. I demonstrated that most ubiquitin chains are on the cytoplasmic site of the phagosome enabling an interaction of ubiquitin chains with cytosolic proteins such as Rab7. Rab7 a major regulator of vesicle trafficking could be shown to be ubiquitylated on phagosomes. I further showed that phagosomal recruitment of the E3 ligase RNF115 is enhanced upon IFN-γ stimulation and RNF115 is responsible for most of the increase of K63 polyubiquitylation of phagosomal proteins. Knock-down of RNF115 promotes phagosome maturation and induces an increased pro-inflammatory response to Toll-like receptor (TLR) agonists, indicating that RNF115 is a negative regulator of vesicular trafficking to the lysosome and disruption of this pathway induces pro-inflammatory responses in macrophages. In conclusion, this is the first study showing unbiasedly that ubiquitylation plays an important role in vesicle trafficking to the lysosome.
9

Caractérisation moléculaire de la modulation spatio-temporelle des fonctions du phagosome

Goyette, Guillaume 04 1900 (has links)
La phagocytose est un processus par lequel des cellules spécialisées du système immunitaire comme les macrophages ingèrent des microorganismes envahisseurs afin de les détruire. Les microbes phagocytés se retrouvent dans un compartiment intracellulaire nommé le phagosome, qui acquiert graduellement de nombreuses molécules lui permettant de se transformer en phagolysosome possédant la capacité de tuer et dégrader son contenu. L’utilisation de la protéomique a permis de mettre en évidence la présence de microdomaines (aussi nommés radeaux lipidiques ou radeaux membranaires) sur les phagosomes des macrophages. Notre équipe a démontré que ces radeaux exercent des fonctions cruciales au niveau de la membrane du phagosome. D’abord nous avons observé que la survie du parasite intracellulaire L. donovani est possible dans un phagosome dépourvu de radeaux lipidiques. Parallèlement nous avons constaté qu’un mutant de L. donovani n’exprimant pas de LPG à sa surface(LPG-) est rapidement tué dans un phagosome arborant des radeaux membranaires. Pour comprendre le mécanisme de perturbation des microdomaines du phagosome par la molécule LPG, nous avons provoqué la phagocytose de mutants LPG- du parasite et comparé par microscopie les différences avec le parasite de type sauvage. Nous avons ainsi démontré que le LPG de L. donovani est nécessaire et suffisant au parasite pour empêcher la maturation normale du phagosome. Nous avons également découvert que la molécule LPG permet d’empêcher la formation des radeaux lipidiques sur le phagosome et peut aussi désorganiser les radeaux lipidiques préexistants. Enfin, nous avons montré que l’action de LPG est proportionnelle au nombre d’unités répétitives de sucres (Gal(β1,4)-Manα1-PO4) qui composent cette molécule. Nos travaux ont démontré pour la première fois le rôle important de ces sous-domaines membranaires dans la maturation du phagosome. De plus, nos conclusions seront des pistes à suivre au cours des études cliniques ayant pour but d’enrayer la leishmaniose. Le second objectif de ce travail consistait à effectuer la caractérisation des radeaux lipidiques par une analyse protéomique et lipidomique à l’aide de la spectrométrie de masse. Nous avons ainsi entrepris l’identification systématique des protéines présentes dans les radeaux membranaires des phagosomes et ce, à trois moments clés de leurmaturation. Le traitement des phagosomes purifiés avec un détergent nous a permis d’isoler les «Detergent Resistent Membranes» (DRMs) des phagosomes, qui sont l’équivalent biochimique des radeaux membranaires. Nous avons ainsi établi une liste de 921 protéines associées au phagosome, dont 352 sont présentes dans les DRMs. Les protéines du phagosome sont partagées presque également entre trois tendances cinétiques (augmentation, diminution et présence transitoire). Cependant, une analyse plus spécifique des protéines des DRMs démontre qu’une majorité d’entre elles augmentent en fonction de la maturation. Cette observation ainsi que certains de nos résultats montrent que les radeaux lipidiques des phagosomes précoces sont soit très peu nombreux, soit pauvres en protéines, et qu’ils sont recrutés au cours de la maturation du phagosome. Nous avons aussi analysé les phospholipides du phagosome et constaté que la proportion entre chaque classe varie lors de la maturation. De plus, en regardant spécifiquement les différentes espèces de phospholipides nous avons constaté que ce ne sont pas uniquement les espèces majoritaires de la cellule qui dominent la composition de la membrane du phagosome. L’ensemble de nos résultats a permis de mettre en évidence plusieurs fonctions potentielles des radeaux lipidiques, lesquelles sont essentielles à la biogenèse des phagolysosomes (signalisation, fusion membranaire, action microbicide, transport transmembranaire, remodelage de l’actine). De plus, la cinétique d’acquisition des protéines de radeaux lipidiques indique que ceux-ci exerceraient leurs fonctions principalement au niveau des phagosomes ayant atteint un certain niveau de maturation. L’augmentation du nombre de protéines des radeaux membranaires qui s’effectue durant la maturation du phagosome s’accompagne d’une modulation des phospholipides, ce qui laisse penser que les radeaux membranaires se forment graduellement sur le phagosome et que ce ne sont pas seulement les protéines qui sont importées. / Macrophages are specialized cells of the immune system which mediate destruction and killing of invading micro-organisms. They do so by engulfing them by a process called phagocytosis. Microbes are then captured in an intracellular compartment, the phagosome, which gradually acquire molecules able to attack and degrade its cargo. Use of proteomics let us demonstrate the presence of flotillin-1 enriched microdomains (also called lipid rafts or membrane rafts) on the phagosomes. Our team demonstrated the crucial importance of these rafts in the phagocytosis process. Indeed, survival of L. donovani correlates with its presence in a ‘raftless’ phagosome while a mutated L. donovani without LPG is rapidly killed in a phagosome containing lipid rafts. To understand the membrane raft destabilisation mechanism mediated the LPG molecule, we induced phagocytosis of parasites devoid of LPG (LPG-) and compared it to the wild type parasite by microscopy. We first demonstrated that LPG alone is necessary to prevent normal maturation of the phagosome. Additionally, we discovered that the LPG molecule not only inhibits lipid rafts formation on the phagosome but also disorganise pre-existing lipid rafts. This effect of LPG is proportional to the number of repetitive sugar units (Gal( 1,4)-Man 1-PO4) which compose this molecule. Our work demonstrated for the first time an important role of the membrane rafts in the phagosome maturation. Moreover, our conclusions will give new interesting leads for clinical studies on leishmaniosis. The second goal of this work was to characterise them with proteomics and lipidomics tools. To do this, we undertook the systematic identification of proteins present on both subdomains of the phagosome (lipid rafts versus the rest of the phagosomal membrane). To achieve this, we purified phagosomes, from which we isolated lipid rafts by floating Triton X-100 insoluble membranes (DRMs for Detergent Insoluble Membranes). After that, we identified proteins by mass spectrometry.
10

Caractérisation moléculaire de la modulation spatio-temporelle des fonctions du phagosome

Goyette, Guillaume 04 1900 (has links)
La phagocytose est un processus par lequel des cellules spécialisées du système immunitaire comme les macrophages ingèrent des microorganismes envahisseurs afin de les détruire. Les microbes phagocytés se retrouvent dans un compartiment intracellulaire nommé le phagosome, qui acquiert graduellement de nombreuses molécules lui permettant de se transformer en phagolysosome possédant la capacité de tuer et dégrader son contenu. L’utilisation de la protéomique a permis de mettre en évidence la présence de microdomaines (aussi nommés radeaux lipidiques ou radeaux membranaires) sur les phagosomes des macrophages. Notre équipe a démontré que ces radeaux exercent des fonctions cruciales au niveau de la membrane du phagosome. D’abord nous avons observé que la survie du parasite intracellulaire L. donovani est possible dans un phagosome dépourvu de radeaux lipidiques. Parallèlement nous avons constaté qu’un mutant de L. donovani n’exprimant pas de LPG à sa surface(LPG-) est rapidement tué dans un phagosome arborant des radeaux membranaires. Pour comprendre le mécanisme de perturbation des microdomaines du phagosome par la molécule LPG, nous avons provoqué la phagocytose de mutants LPG- du parasite et comparé par microscopie les différences avec le parasite de type sauvage. Nous avons ainsi démontré que le LPG de L. donovani est nécessaire et suffisant au parasite pour empêcher la maturation normale du phagosome. Nous avons également découvert que la molécule LPG permet d’empêcher la formation des radeaux lipidiques sur le phagosome et peut aussi désorganiser les radeaux lipidiques préexistants. Enfin, nous avons montré que l’action de LPG est proportionnelle au nombre d’unités répétitives de sucres (Gal(β1,4)-Manα1-PO4) qui composent cette molécule. Nos travaux ont démontré pour la première fois le rôle important de ces sous-domaines membranaires dans la maturation du phagosome. De plus, nos conclusions seront des pistes à suivre au cours des études cliniques ayant pour but d’enrayer la leishmaniose. Le second objectif de ce travail consistait à effectuer la caractérisation des radeaux lipidiques par une analyse protéomique et lipidomique à l’aide de la spectrométrie de masse. Nous avons ainsi entrepris l’identification systématique des protéines présentes dans les radeaux membranaires des phagosomes et ce, à trois moments clés de leurmaturation. Le traitement des phagosomes purifiés avec un détergent nous a permis d’isoler les «Detergent Resistent Membranes» (DRMs) des phagosomes, qui sont l’équivalent biochimique des radeaux membranaires. Nous avons ainsi établi une liste de 921 protéines associées au phagosome, dont 352 sont présentes dans les DRMs. Les protéines du phagosome sont partagées presque également entre trois tendances cinétiques (augmentation, diminution et présence transitoire). Cependant, une analyse plus spécifique des protéines des DRMs démontre qu’une majorité d’entre elles augmentent en fonction de la maturation. Cette observation ainsi que certains de nos résultats montrent que les radeaux lipidiques des phagosomes précoces sont soit très peu nombreux, soit pauvres en protéines, et qu’ils sont recrutés au cours de la maturation du phagosome. Nous avons aussi analysé les phospholipides du phagosome et constaté que la proportion entre chaque classe varie lors de la maturation. De plus, en regardant spécifiquement les différentes espèces de phospholipides nous avons constaté que ce ne sont pas uniquement les espèces majoritaires de la cellule qui dominent la composition de la membrane du phagosome. L’ensemble de nos résultats a permis de mettre en évidence plusieurs fonctions potentielles des radeaux lipidiques, lesquelles sont essentielles à la biogenèse des phagolysosomes (signalisation, fusion membranaire, action microbicide, transport transmembranaire, remodelage de l’actine). De plus, la cinétique d’acquisition des protéines de radeaux lipidiques indique que ceux-ci exerceraient leurs fonctions principalement au niveau des phagosomes ayant atteint un certain niveau de maturation. L’augmentation du nombre de protéines des radeaux membranaires qui s’effectue durant la maturation du phagosome s’accompagne d’une modulation des phospholipides, ce qui laisse penser que les radeaux membranaires se forment graduellement sur le phagosome et que ce ne sont pas seulement les protéines qui sont importées. / Macrophages are specialized cells of the immune system which mediate destruction and killing of invading micro-organisms. They do so by engulfing them by a process called phagocytosis. Microbes are then captured in an intracellular compartment, the phagosome, which gradually acquire molecules able to attack and degrade its cargo. Use of proteomics let us demonstrate the presence of flotillin-1 enriched microdomains (also called lipid rafts or membrane rafts) on the phagosomes. Our team demonstrated the crucial importance of these rafts in the phagocytosis process. Indeed, survival of L. donovani correlates with its presence in a ‘raftless’ phagosome while a mutated L. donovani without LPG is rapidly killed in a phagosome containing lipid rafts. To understand the membrane raft destabilisation mechanism mediated the LPG molecule, we induced phagocytosis of parasites devoid of LPG (LPG-) and compared it to the wild type parasite by microscopy. We first demonstrated that LPG alone is necessary to prevent normal maturation of the phagosome. Additionally, we discovered that the LPG molecule not only inhibits lipid rafts formation on the phagosome but also disorganise pre-existing lipid rafts. This effect of LPG is proportional to the number of repetitive sugar units (Gal( 1,4)-Man 1-PO4) which compose this molecule. Our work demonstrated for the first time an important role of the membrane rafts in the phagosome maturation. Moreover, our conclusions will give new interesting leads for clinical studies on leishmaniosis. The second goal of this work was to characterise them with proteomics and lipidomics tools. To do this, we undertook the systematic identification of proteins present on both subdomains of the phagosome (lipid rafts versus the rest of the phagosomal membrane). To achieve this, we purified phagosomes, from which we isolated lipid rafts by floating Triton X-100 insoluble membranes (DRMs for Detergent Insoluble Membranes). After that, we identified proteins by mass spectrometry.

Page generated in 0.0399 seconds