Return to search

Utvärdering av lägesosäkerheter i ortofoton framtagna med hjälp av DJI Phantom 4 RTK / Evaluation of position uncertainties in orthophotos developed with a DJI Phantom 4 RTK

Flygfotografering med Unmanned Aircraft System (UAS) är i jämförelse med traditionell fotogrammetri effektivare, billigare och säkrare vilket har medfört att denna teknik föredras av många aktörer. Ett tidskrävande arbete som varit svårt att kringgå är att etablera flygsignaler på marken som används för att georeferera och kontrollera flygbilderna med. Under 2018 presenterade UAS-tillverkaren DJI sin nya quadcopter med integrerad Real-Time Kinematic (RTK)-modul. I samband med detta kan kontinuerliga och noggranna positioner levereras via Nätverks-RTK (NRTK) och behovet av markstödpunkter reduceras. I denna studie undersöktes lägesosäkerheterna i plan för ortofoton som framställdes med hjälp av en DJI Phantom 4 RTK där flygbilderna georefererades med begränsat antal eller utan markstödpunkter. Lägesosäkerheterna beräknades och kontrollerades enligt Handbok i mät- och kartfrågor (HMK) – Ortofoto, vilket är ett stöddokument inom ämnet. Vid framställning av ett ortofoto krävs även en digital terrängmodell (DTM) eller en digital ytmodell (Digital Surface Model, DSM) och kvaliteten av denna har stor inverkan på ortofotots kvalitet. I denna studie kontrollerades och utvärderades därför en del av den DSM som användes vid ortofotoframställning för respektive uppsättning enligt den tekniska specifikationen SIS-TS 21144:2016. Resultatet från studien visar att ett ortofoto går att framställas utan markstödpunkter och samtidigt klara kraven på specificerad lägesosäkerhet enligt HMK-standardnivå 3. Den sammanlagda lägesosäkerheten beräknades till 0,029 m vilket är 5 mm högre i jämförelse med ett ortofoto som baserats på traditionell georefereringsmetod, dvs. med markstödpunkter. Kravet på kvalitet i höjddata uppfylldes också för ortofotoframställning trots att en systematisk effekt i höjd uppkom. Denna effekt påverkade inte ortofotots koordinater i plan då standardosäkerheterna i höjd var låga. Resultatet visade att om två markstödpunkter adderades i vardera änden av området, kunde de systematiska effekterna i höjd minimeras och det var då möjligt att skapa en DSM som uppfyller kraven för detaljprojektering (noggrannhetsklass 1–3) enligt SIS-TS 21144:2016. / Aerial photography with UAS is in comparison with traditional photogrammetry more efficient, cheaper and safer which has led to this technology being preferred by many performers. A time-consuming job that has been difficult to avoid is to establish signals at the ground that are used for georeferencing and evaluate the results. In 2018, the UAS manufacturer DJI presented its new quadcopter with integrated Real-Time Kinematic (RTK) module. This allows continuous and accurate positions delivered via Network RTK (NRTK) and the need of ground control points can be reduced. In this study, investigations of the position uncertainties in orthophotos produced using a DJI Phantom 4 RTK carried out where the aerial images were georeferenced with limited numbers or without ground control points. The position uncertainties were calculated and controlled according to the Swedish HMK – Ortofoto (Orthophoto) which is a document within the subject. When producing an orthophoto, a digital terrain model (DTM) or a digital surface model (DSM) is also required and the quality of this has a great impact on the result. Therefore, a part of the DSM used for orthophoto production for each set was checked and evaluated according to the Swedish technical specification, SIS-TS 21144:2016. The result of the study shows that an orthophoto can be produced without ground control points and at the same time meet the requirements for specified position uncertainty according to HMK standard level 3. The total position uncertainty was calculated to be 0,029 m, which is 5 mm higher compared to the orthophoto based on the traditional georeferencing method, i.e. with ground control points. The requirement for quality in height data was also met for orthophoto production even though a systematic effect in height occurred. This effect did not affect the plane coordinates in the orthophoto because of the low standard uncertainties in height. The result showed that if two ground control points were added at each end of the area, the systematic effects were minimized, and it was possible to produce a DSM that fulfils the requirements for accuracy class 1-3 according to SIS-TS 21144:2016.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hig-29914
Date January 2019
CreatorsLarsson, Johan, Stark, Marcus
PublisherHögskolan i Gävle, Samhällsbyggnad
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds