Return to search

UNHINDERED TRIANGULENE SALT PAIRS: SUBSTITUTION-DEPENDENT CONTACT ION PAIRING AND COMPLEX SOLVENT-SEPARATED DISCOTIC IONS IN SOLUTION

This work sought to enforce aromatic interactions between compatible π-molecular orbital systems with ionic bonding. In this case the interacting partners are oppositely charged discotic triangulene derivatives. The observed properties of the heterodimeric ion-pairs likely arise due to a hypothetical synergy between electrostatics and π-interactions. The work presented here describes investigation of putative covalency arising from this hypothetical synergy in the electrostatics driven π-stacking. In order to probe this, various hypotheses were made and experiments were designed to test their validity. The results from the experiments show existence of contact ion-pairs and complex solvent-separated discotic ions in solution. The formation of complex ion-pairs arise due to the fact that the electrostatic interaction that brings the discotic ions together is strong, but does not neutralize when the contact is made. So, the dipole created by the monopoles in a dimeric contact ion-pair can attract ions at both termini forming oligomers. This process apparently continues towards highly aggregated states and then to nanometric species and at some point the material precipitates. The propensity to aggregate and form complex-ions limited our approach to the measurement of the energetics of the ion-pairing for two reasons: (1) the observables had a complex dependence on temperature, solvent, concentration and ionic strength; and (2) the mass in solution was undergoing kinetic evolution towards solid states. The turbidimetric effects arising due to aggregate formation further complicated the extraction of weak interactions between the ions and hence effects determination of ion-pairing constants.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:chemistry_etds-1052
Date01 January 2015
CreatorsModekrutti, Subrahmanyam
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Chemistry

Page generated in 0.0021 seconds