Breast cancer metastasis is one of the reasons why this type of cancer is destructive even after treatment as it tends to move from one organ to another increasing the risk factor for an individual. In the metastatic cascade, the tumour undergoes many different types of stress, including extracellular (ECM) stiffness. Key proteins that have been linked to the change in stiffness of the ECM are YAP and β-catenin. Both functions similarly in the manner that they need to translocate to the nucleus and bind to their respective transcription factors in order to activate their downstream genes. In parallel this seems to be on a stiffness dependent manner. Therefore, the hypothesis is that β-catenin is able to compensate for YAP function when YAP is downregulated in a stiffness dependent manner. In this work, results show a significant increase of YAP and β-catenin translocation to the nucleus of MDA-MB-231 cells when they are subject to the stiffer substrate in comparison to the softer substrate indicating increase gene expression of their respective pathways. The effect of the stiffness was then analyzed by doing single knockdown experiments with siRNA. To investigate the response of β-catenin, knocking down YAP was done, and it was shown that β-catenin translocation significantly increased on the softer matrix, while stiffer matrix showed no significant difference. Downstream gene expression also confirmed this idea with CTGF being downregulated with β-catenin knockdown and AXIN2 being downregulated with YAP knockdown. In the cell behavioural aspect, only when the double knockdown of YAP and β-catenin was done, the migration and proliferation rate had significant lowered. This echoes the idea further of the compensating effects of β-catenin to YAP. In addition, the exploration of the cytoskeleton network was investigated, as this is a key component in protein pathways, by treating the cells using LatA and Blebbistatin, affecting F-actin and myosin-II respectively. Knowing the critical role of cytoskeletal proteins in mechanotransduction, the hypothesis is that actin filaments and myosin-II mediate the YAP & β-catenin nuclear translocation activation. Findings show the direct relationship between F-actin and YAP as actin polymerization state significantly decreased when YAP was knockdown in a similar manner to when LatA was added. When myosin-II was added, both YAP and β-catenin nuclear translocation were affected, indicating its potential role in mechanotransduction. Furthermore, it was found that cell confluency and PIEZO1 activation had significant effects in YAP & β-catenin translocation. By seeding the cells with different densities, the β-catenin signalling could be visualized with IF staining, with the conclusion that at high confluency, the β-catenin translocation was alleviated. For the PIEZO1 studies, results indicate that PIEZO1 is an upstream regulator of YAP by doing single knockdown experiments and subsequently analysing YAP signalling. The findings underscore the potential significance of β-catenin as a modulator of mechanotransduction in the absence of YAP, showcasing the complexity of the protein signalling network orchestrating cellular response due to mechanical cues. Unravelling these protein interplay could offer novel insights into therapeutic targets for breast cancer mechanotransduction. Ultimately, this research adds to the understanding of the intricate protein signalling that governs mechanotransduction in breast cancer cells. The discovery of stiffness dependent YAP & β-catenin signalling, the interplay between YAP and β-catenin pathway mechanotransduction implicated by cell density, the regulation of YAP- β-catenin interplay in mechanotransduction by PIEZO1, the importance of F-actin & myosin-II in YAP & β-catenin translocation, and the YAP & β-catenin effects on cell behaviour, all help lay the groundwork for devising targeted interventions to impede cancer progression. / Thesis / Master of Applied Science (MASc) / Breast cancer is the most prominent type of cancer that exists in women and like other cancers, it can spread to other organs such as the bone, liver, and brain even though the microenvironments are different. With different proteins like yes-associated protein (YAP) regulating this microenvironmental change in the primary and secondary sites, it can flourish and become more aggressive which leads to death for the host. The interactions of these proteins and their pathways which affects the aggressiveness of the cancers are still not well understood. This project investigates the interaction between YAP and β-catenin in response to surface stiffness to understand the mechanical regulation of breast cancer metastasis. Alongside the protein signalling, cytoskeletal components, downstream gene expression, cell confluency, and membrane proteins are explored. Our results show that an increase in stiffness allow for higher nuclear translocation for YAP and β-catenin, enhancing downstream gene expression relating to migration and proliferation. Furthermore, in lower stiffness the crosstalk between YAP and β-catenin results in an inverse relationship. These findings suggest β-catenin compensates YAP function when YAP is inhibited. In terms of the cytoskeletal protein, an integral part of the cell, the intervention saw a significant alteration in the YAP & β-catenin signalling. Additionally, cell confluency played a large role in β-catenin nuclear translocation implicating the role of cell-to-cell contact in mechanotransduction. To see if mechanosensitive membrane proteins fit into the pathway, PIEZO1 studies were done and results show that it is an upstream effector of YAP, and consequently an indirect connection with β-catenin. All in all, this thesis provides insightful information in the role of stiffness matrix, cell confluency, membrane proteins and how that regulate YAP & β-catenin. This research provides the mechanism for the synergistic therapies targeting multiple proteins to prevent cancer growth and metastasis.
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/29437 |
Date | January 2023 |
Creators | Su, Zhi Hong |
Contributors | Geng, Fei, Biomedical Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0032 seconds