• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statische und dynamische Lichtstreuung an Lösungen von Aktinfilamenten

Storz, Tobias-Alexander. January 2001 (has links) (PDF)
München, Techn. Universiẗat, Diss., 2001.
2

Wechselwirkung von Ezrin mit PIP2-haltigen artifiziellen Membransystemen und mit F-Aktin

Herrig, Wolfgang Alexander January 2007 (has links)
Regensburg, Univ., Diss., 2007
3

Insights into the allosteric interactions within the actin molecule

Stokasimov, Ema 01 December 2009 (has links)
Actin's ability to engage in a wide range of physiological functions requires that it be subject to complex spatial and temporal regulation. This regulation is achieved internally through monomer-monomer contacts and externally through interactions with actin binding proteins. The first part of my thesis focused on better understanding the role of inter-monomeric ionic interactions proposed between subdomains 2 and 3 of opposing monomers in F-actin stabilization. I studied several yeast actin mutants: A167R to disrupt a proposed ionic attraction with R39, A167E to mimic a proposed ionic attraction in muscle actin, and D275R to disrupt a proposed ionic attraction with R39. I investigated the effects of mutations in vivo, effects on filament polymerization characteristics and appearance in vitro, as well as interaction of the mutants with the filament severing protein cofilin. While both in vivo and in vitro data demonstrated the importance of the R39-D275 interaction for yeast actin and the interaction of the filament with cofilin, disruption of this interaction alone did not cause filament fragmentation. Conversely, results with A167 do demonstrate the in vivo and in vitro importance of another potential R39 ionic interaction for filament stabilization. In the second part of my work I used amide proton hydrogen/deuterium (HD) exchange detected by mass spectrometry as a tool to gain structural insight into yeast and muscle actin and profilin isoform differences and the actin-profilin interaction. The yeast and muscle actin HD analysis showed greater exchange for yeast G-actin compared to muscle actin in the barbed end pivot region and areas in subdomains 1 and 2, and for F-actin in monomer-monomer contact areas. These results suggest greater flexibility of the yeast actin monomer and filament compared to muscle actin. For yeast-muscle hybrid G-actins, the muscle-like and yeast-like parts of the molecule generally showed exchange characteristics resembling their parent actins. There were a few exceptions to this rule, however: a peptide on top of subdomain 2 and the pivot region between subdomains 1 and 3. These exhibited muscle actin-like exchange characteristics even though the areas were yeast-like, suggesting that there is crosstalk between subdomains 1 and 2 and the large and small domains. Hybrid F-actin data showing greater exchange compared to both yeast and muscle actins are consistent with mismatched yeast-muscle actin interfaces resulting in decreased stability of the hybrid filament contacts. Actin-profilin HD exchange results demonstrated a possible differential interaction of specific profilin isoforms with specific actin isoforms. While profilin binding mostly caused a decreased exchange for yeast actin peptides, it caused an increase in exchange for muscle actin peptides. Many of the changes observed were in peptides that line or contact the nucleotide cleft, consistent with profilin's ability to alter the kinetics of nucleotide exchange.
4

Molecular components and organelles involved in calcium-mediated signal-transduction in Paramecium

Sehring, Ivonne Margarete. January 2006 (has links)
Konstanz, Univ., Diss., 2006.
5

Das survival of motoneuron (SMN) Protein und axonales Wachstum : Bedeutung für die molekulare Pathologie der spinalen Muskelatrophie

Bergeijk, Jeroen van January 2007 (has links) (PDF)
Hannover, Univ., Diss., 2007
6

Impact of Osmolytes and Cation on Actin Filament Assembly and Mechanics

Kalae, Abdulrazak 01 January 2023 (has links) (PDF)
Actin is a highly abundant protein in most eukaryotic cells. The assembly of actin monomers to double helical filaments is crucial for many cellular functions, including cell movement and cell division. Actin filament assembly in cells occurs in a crowded intracellular environment consisting of various molecules, including cations and organic osmolytes. Recent studies show that cation binding stiffens actin filaments, and a small organic osmolyte trimethylamine-N-oxide (TMAO) modulates filament assembly. However, how cations and TMAO combined affect actin filament mechanics is not understood. We hypothesize that depending on the concentrations of cations and osmolytes, there will be different effects on the stiffness and assembly of actin filaments. In this study, using TIRF we evaluate actin filament mechanics and assembly. Our findings indicate that when TMAO is present alone, it can increase the elongation rate and stiffness of actin filaments, however the inclusion of potassium levels alongside TMAO reduces the persistence length of actin filaments, suggesting a decrease in filament stiffness compared to the influence of TMAO alone. Furthermore, the elongation rate of actin filaments decreases when both TMAO and potassium ions are present. This study will help us better understand how cations and osmolytes together can affect actin filament mechanics in the living cells.
7

Charakterisierung der Aktin-ADP-Ribosyltransferase SpvB aus Salmonella enterica

Figura, Guido von, January 2005 (has links)
Freiburg i. Br., Univ., Diss., 2007.
8

Molecular insights into the Tau-actin interaction

Cabrales Fontela, Yunior 22 May 2017 (has links)
No description available.
9

Dynamik, Biomechanik und Plastizität des Aktinzytoskeletts in migrierenden B16/F1 GFP-Aktin Melanomzellen in 2D und 3D extrazellulärer Matrix / Dynamic, biomechanics and plasticity of the actin cytoskeleton in migrating B16/F1 GFP-actin mouse melanoma cells in 2D and 3D extracellular matrix

Starke, Josefine January 2007 (has links) (PDF)
Die Anpassung des Aktinzytoskeletts an extrazelluläre Gewebsstrukturen ist Voraussetzung für die Interaktion mit der extrazellulären Matrix und für die Zellbewegung, einschließlich der Invasion und Metastasierung von Tumorzellen. Wir untersuchten bei invasiven B16/F1 GFP-Aktin Mausmelanomzellen, ob und wie sich Zellform, Art und Effizienz der Bewegung an physikalisch unterschiedlich beschaffene kollagenöse Umgebungen anpassen: 1) mit Kollagen-Monomeren beschichtete 2D Objektträger, 2) 2D Oberfläche einer fibrillären Kollagenmatrix und 3) Zellen, die in einer 3D Kollagenmatrix eingebettet waren. Zur Darstellung des Aktinzytoskeletts wurden Zellen eingesetzt, die GFP-Aktin Fusionsprotein exprimierten, und mittels Zeitraffer-Videomikroskopie und Konfokalmikroskopie untersucht. Im direkten Vergleich waren Struktur und Dynamik des Aktinzytoskelett wie auch Zellform und Art der Migration unterschiedlich in den verschiedenen Umgebungen. Auf 2D planer Oberfläche erfolgte eine rasche Adhäsion und Abflachung der Zellen (Spreading) mit nachfolgender Migration mit Bildung fokaler Adhäsionszonen, in die kabelartige Aktinstrukturen (Stress fibers) einstrahlten. Dagegen entwickelte sich in 3D Kollagenmatrices eine spindelförmige, fibroblastenähnliche Zellform (mesenchymal) mit zylindrischen fingerförmigen vorderen Pseudopodien, die Zug der Zelle nach vorne bewirken und hochdynamisches polymeres Aktin, nicht jedoch Stress Fibers enthielten. Eine ähnliche Zellform und Struktur des Zytoskeletts entwickelte sich in Zellen auf 2D fibrillärem Kollagen. Die Kontaktfindung und Migrationseffizienz auf oder in fibrillären Matrices war im Vergleich zu 2D kollagenbeschichteter Oberfläche erschwert, die Migrationseffizienz verringert. In Kontrollversuchen wurden Migration und polarisierte Bildung von Aktindynamik durch Inhibitoren des Aktinzytoskeletts (Cytochalasin D, Latrunculin B, Jasplakinolide) stark gehemmt. Diese Befunde zeigen , dass die Struktur und Dynamik des Aktinzytoskeletts sowie die Art der Migration in Tumorzellen stärker als bisher angenommen durch die umgebende Kollagenstruktur bestimmt wird. Während 3D Kollagenmatrices in vivo ähnliche bipolare Zytoskelettstruktur fördern, müssen Abflachung der Zellen mit Bildung von Stress Fibers als spezifische Charakteristika von 2D Modellen angesehen werden. / The dynamics and the adaptation of the actin cytoskeleton in response to extracellular matrix structures is the prerequisite for cell polarisation, shape change, and migration, including the invasion and metastasis of tumor cells. In invasive B16-mouse melanoma cells expressing GFP-actin fusion protein we directly imaged cytoskeletal dynamics, adaptation and movement in response to physically different collagen substrata using time-lapse videomicroscopy and confocal microscopy: 1) cells on 2D surfaces coated with monomeric collagen, 2) 2D surfaces composed of fibrilliar collagen, and 3) cells which were embedded in 3D collagen matrices. In directly comparision the structure and dynamic of the actin cytoskeleton, cell shape and migration efficiency were different between the different collagen substrata. On 2D monomeric collagen quick cell adhesion, spreading, and cell flattening were followed by migration driven by focal contacts in which cable like actin structures (stress fibres) inserted. In 3D collagen matrices however, cells developed a spindle like (mesenchymal) shape with cylindrical finger-like pseudopods which generated the forward-driving force towards collagen fibres. These pseudopods contained dynamic polymerized actin yet lacked stress fibres. A similar mesenchymal cell shape and structure of the actin cytosceleton that lacked stringent focal contacts and stress fibres developed on 2D fibrilliar collagen matrices. The migration efficiency in 3D collagen was significantly lower, compared to 2D substrata, suggesting an impact of matrix barriers on the migration velocity. Both, actin polymerization and migration were severely impaired by inhibitors of the actin cytoskeleton (Cytochalasin D, Latrunculin B, Jasplakinolide), causing cell rounding and oscillatory “running on the spot”. These findings show the dynamics of the actin cytoskeleton in living melanoma cells critically dependent on and respond to the physical structure of the ECM. 3D collagen matrices hence favour in vivo-like cell shape and cytoskeletal organization while flat cell spreading and formation of stress fibres are specific cell characteristics of cells on 2D.
10

Exploration par simulations numériques de l'auto-organisation du cytosquelette sous conditions géométriquement contrôlées / Exploration of the cytoskeleton auto-organisation under geometric constraints by numerical simulations

Letort, Gaelle 22 September 2015 (has links)
Le cytosquelette joue un rôle essentiel dans de nombreux processus cellulaires (division, adhésion, migration, morphogenèse..). Un de ses principaux constituants, les filaments d'actine, des polymères semi flexibles polarisés, forme des réseaux dont les architectures spécifiques permettent au cytosquelette de réaliser ses fonctions physiologiques. Un enjeu majeur en biologie cellulaire est de comprendre comment les cellules peuvent former une telle variété d'organisations à partir de la même entité de base, les monomères d'actine. Nous avons découvert récemment que limiter la nucléation des filaments d'actine à des géométries définies suffit à contrôler la formation de différentes organisations (Reymann et al, 2010). Néanmoins, les paramètres principaux permettant d'expliquer comment ces contraintes géométriques déterminent l'organisation collective des filaments n'ont pas été identifiés. Pour comprendre les lois physiques régissant ce phénomène, j'ai développé des simulations numériques du système expérimental en utilisant le logiciel Cytosim. J'ai pu ainsi montrer que la géométrie, les interactions stériques entre filaments, leurs propriétés mécaniques, et l'efficacité de la nucléation sont les paramètres clés contrôlant la formation de structures. Cette étude propose une base solide pour comprendre l'organisation cellulaire de l'actine en identifiant un système minimal de composants suffisant pour simuler l'émergence de différentes organisations d'actine (réseau branché, faisceaux de filaments parallèles ou antiparallèles). Avec cet outil, nous pouvons à présent prédire, étant donnée une géométrie de nucléation, quelles structures en émergeront.Nous avons alors combiné nos deux méthodes in-vitro et in-silico pour étudier comment le couplage entre l'architecture des réseaux et leur composition biochimique contrôle la réponse contractile. La connectivité entre les filaments en est un facteur crucial. En effet, un réseau peu connecté se déforme seulement localement, et n'instaure pas de comportement global. Une structure fortement connectée est très rigide, les moteurs moléculaires ne peuvent donc pas la déformer efficacement. La contraction d'une structure n'est donc possible que pour des valeurs de connectivité intermédiaires. L'amplitude de cette contraction est alors déterminée par l'organisation des filaments. Ainsi nous avons pu expliquer comment l'architecture mais aussi la connectivité des réseaux gouverne leur contractilité.Finalement, les microtubules sont aussi des acteurs essentiels aux processus cellulaires. Étant longs et rigides, ils servent de senseurs de la forme cellulaire et organisent les organites. Leur distribution spatiale, facteur majeur pour l'organisation cellulaire, est contrôlée dans un grand nombre de types cellulaires par la position du centrosome, un organite qui nuclée la plupart des microtubules. La capacité du centrosome à trouver le centre de la cellule dans de nombreuses conditions physiologiques est particulièrement étonante. Il peut aussi adopter une position décentrée lors de processus cellulaires spécifiques. Des mécanismes pouvant potentiellement expliquer le positionnement du centrosome ont été proposés (Manneville et al., 2006; Zhu et al, 2010), mais ce phénomène reste dans sa plus grande partie inexpliqué. J'ai utilisé les simulations pour explorer différents mécanismes pouvant le contrôler selon différentes conditions. Ces résultats permettent de disposer d'une base théorique pour présumer des mécanismes intervenant dans un système donné. Ils peuvent aussi permettre de valider ou réfuter des hypothèses sur les phénomènes mis en jeu et aider à l'élaboration de nouveaux systèmes expérimentaux.Les simulations que j'ai développées aident ici à étudier des comportements spécifiques, en apportant de nouveaux éclairages sur les comportements collectifs du cytosquelette. Elles pourraient être utilisées comme un outil prédictif ou adaptées pour l'étude d'autres systèmes expérimentaux. / The cytoskeleton plays a crucial role in cellular processes, including cell division, adhesion, migration and morphogenesis. One of its main compenent, the actin filaments, a polarised semi-flexible polymer, contributes to these processes by forming specific collective architectures, whose structural organisations are essential to perform their functions. A major challenge in cell biology is to understand how the cell can form such a variety of organisations by using the same basic entity, the actin monomers. Recently we discovered that limiting actin nucleation to specific regions was sufficient to obtain actin networks with different organization (Reymann et al., 2010). However, our understanding of the general parameters involved in geometrically-driven actin assembly was limited. To understand mechanistically how spatially constraining actin nucleation determines the emergent actin organization, I performed detailed simulations of the actin filament system using Cytosim, a simulation tool dedicated to cytoskeleton system. I found that geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. This study sets the foundation for our understanding of actin cellular organization by identifying a reduced set of components that were sufficient to realistically reproduce in silico the emergence of the different types of actin organization (branched actin network, parallel or anti parallel actin bundles). We can now predict for any given nucleation geometry which structures will form.Being able to control the formation of specific structures in-vitro and in-silico, we used the combination of both methods to study how the interplay between actin network architecture and its biochemical composition affects its contractile response. We highlighted the importance of the connectivity between filaments in the structures. Indeed, a loosely connected network cannot have a global behavior, but undergoes only local deformations. A highly connected network will be too rigid to be efficiently deformed by molecular motors. Only for an intermediate range of network connectivity the structures will contract, with an amplitude that depends notably on actin filaments organisation. This work explains how architecture and connectivity govern actin network contractility.Finally, the microtubules are also essential actors of cellular processes. Being long and rigid, they serve as sensors of the cellular shape and can organize the position of organelles in the cytoplasm. Their spatial distribution in the cell is thus a crucial cellular feature. this distribution is determined in a vast number of cell types by the position of the centrosome, an organelle that nucleates the majority of microtubules. Quite strinkingly, the centrosome is able to find the center of the cell in a lot of different physiological conditions, but can nonetheless adopt a decentered position in specific cellular processes. How this positioning is controled is not yet fully understood, but a few potential mechanims have been proposed (Manneville et al., 2006; Zhu et al., 2010). I used the simulations to explore different mechanisms taht can explain the position of the centrosome under different conditions. These results offer theorical considerations as a basis to assess which mechanism might prevail in a specific experimental system and may help to design new experimental setups.The simulations that I developed helped to study some specific behavior, by giving new insights into cytoskeleton collective organisations. These simulations can be further used as predictive tool or adapted to other experimental systems.

Page generated in 0.0616 seconds