Return to search

Plant-arthropod interactions : domatia and mites in the genus Coprosma (Rubiaceae)

Plant-based defence mutualisms involve aspects of plant morphology that influence the performance of plant parasites, their natural enemies and trophic interactions. Leaf domatia, small indentations on the underside of leaves, can be structurally complex, and are often inhabited by potentially beneficial mites and other arthropods. Plant morphological traits such as domatia that enhance mutualistic relationships may result in increased plant growth rates, and reproductive success. New Zealand supports ~60 plant species that have domatia, the most speciose genus being Coprosma. The aim of this thesis was to examine factors that affect the production of leaf domatia and their relationship with foliar mite assemblages. The three main objectives of this thesis are: First, to investigate the production of foliar domatia and their susceptibility to limited resources, particularly to carbon availability. Second, to test if domatia are inducible structures during leaf ontogeny in the presence of foliar mites and/or fungi. Finally, to explore the effect of domatia availability on foliar mite assemblages on leaves with and without resident mites. This thesis tested the stated objectives using C. lucida, C. ciliata, C. foetidissima and C. rotundifolia, with a combination of field investigations and controlled manipulative experiments. The cost of domatia production was investigated using two field surveys and two controlled experiments. Under natural conditions the relationship between leaf morphology and domatia were measured in situ and across an altitudinal gradient. The experimental manipulations used carbon and nutrient stress, induced by temperature, light and fertilizer application. The second objective was experimentally tested under field conditions by manipulating foliar mites and fungal densities on C. rotundifolia. The third objective was investigated by manipulating domatia availability on C. lucida shrubs across three different vegetation types. Under field conditions, the number of domatia per leaf was associated with leaf morphology in C. lucida and C. foetidissima, but not C. rotundifolia. Foliar carbon showed a positive, but weak association with domatia production in C. foetidissima and C. ciliata. Altitudinal induced-carbon stress on domatia production was ambiguous. Domatia production in C. foetidissima was positively associated to altitude in field survey (1), and negatively associated in the second survey, with no correlation found between carbon and altitude. Experimental C. rotundifolia shrubs held under elevated night-time temperatures showed a 2.5 fold increase in respiration, a 34% to 91% decrease in daily carbon gain, and 38% decrease in domatia per leaf mass. Domatia production showed no significant differences under nutrient stress. The results showed little evidence to support a role for induction of domatia. Domatia production in new leaves was similar across all experimental treatments. Diverse vegetation types supported 60% higher mite species. Leaves with domatia supported ~22 to 66% higher mite densities, greater colonisation success and more diverse mite assemblages, than those without domatia. In the pastoral vegetation, the absence of predatory mites on experimental shrubs resulted in no differences in fungivorous mite densities regardless of domatia availability. Plant investment in foliar domatia appears associated with the number of available sites on the leaf under field conditions. The role of carbon availability during leaf ontogeny suggests a complex and highly variable association with domatia production. Domatia are constitutive defence structures that influence mite assemblages, mediating both beneficial and antagonistic relationships. This thesis concludes that domatia are in part, carbon-based non-inducible structures that influence mite assemblages, plant-mite and mite-mite interactions, and increase the probability of successful colonisation.

Identiferoai:union.ndltd.org:ADTP/243340
Date January 2009
CreatorsO'Connell, Dean Michael, n/a
PublisherUniversity of Otago. Department of Botany
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://policy01.otago.ac.nz/policies/FMPro?-db=policies.fm&-format=viewpolicy.html&-lay=viewpolicy&-sortfield=Title&Type=Academic&-recid=33025&-find), Copyright Dean Michael O'Connell

Page generated in 0.0016 seconds