Return to search

Towards understanding the functionality of foot orthosis based on foot structure and function

The raw data related to the second study of this thesis (Chapter 3) is available online in the section of supporting information at https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232677. These files present the following data:
S1 File. The pattern of foot orthosis depression/reformation for healthy subjects during walking with sport versus regular foot orthosis.
S2 File. Raw data for the training session of sport foot orthosis. This Excel file consists three sheets in which the position of triad markers, the orientation of triad markers and the position of markers on plantar surface of foot orthosis are provided respectively.
S3 File. Raw data for walking with sport foot orthosis. This Excel file consists two sheets in which the position of triad markers and the orientation of triad markers are provided respectively for subject 1.
S4 File. The results of each participant during walking with sport foot orthosis. This .mat file includes “DispEachPoint” and “DispEachPointMean” which shows the displacement of each predicted marker on foot orthosis plantar surface during stance phase of walking relative to its corresponding position in static non weight-bearing for each trial and the average of trials respectively. In addition, “loc_stance” and “loc_meanstance” show the location of each predicted marker during stance phase of walking. “peaks” and “peaksMean” represent the minimum (depression) and maximum (reformation) value of displacement during walking
S5 File. The results of each participant during walking with regular foot orthosis. This .mat file includes “DispEachPoint” and “DispEachPointMean” which shows the displacement of each predicted marker on foot orthosis plantar surface during stance phase of walking relative to its corresponding position in static non weight-bearing for each trial and the average of trials respectively. In addition, “loc_stance” and “loc_meanstance” show the location of each predicted marker during stance phase of walking. “peaks” and “peaksMean” represent the minimum (depression) and maximum (reformation) value of displacement during walking / Les orthèses plantaires (OP) sont des dispositifs médicaux fréquemment utilisés pour réduire les douleurs et blessures de surutilisation, notamment chez les personnes ayant les pieds plats. Le port d'OP permettrait de corriger les altérations biomécaniques attribuées à la déformation du pied plat, que sont la perte de l’arche longitudinale médiale et la pronation excessive du pied. Cependant, le manque de compréhension de la fonction des OP entraine une grande variabilité des OP prescrites en milieu clinique. L'objectif de cette thèse est d'approfondir les connaissances sur l’effet des OP sur la biomécanique, de quantifier les déformations des OP à la marche et de mettre en relation ces déformations avec la biomécanique du pied.
La première étude a évalué la manière dont les différentes conceptions d'OP imposent des modifications dans le mouvement et le chargement appliqué sur le pied. Cet objectif a été atteint grâce à une revue systématique traitant des effets des OP sur la cinématique et la cinétique du membre inférieur pendant la marche chez des personnes ayant des pieds normaux. Les critères d'inclusion ont réduit les études à celles qui ont fait état des résultats pour les géométries les plus fréquentes des OP, à savoir les biseaux, les supports d’arche et les stabilisateurs de talon. La revue a mis en évidence que les orthèses avec un biseau médial peuvent réduire le moment d'éversion de la cheville. Aucune évidence significative n'a été trouvée dans notre méta-analyse sur l'efficacité des orthèses incluant des supports d’arche ou des stabilisateurs de talon. Les différents procédés et matériaux utilisés dans la conception des OP ainsi que les caractéristiques des pieds des participants pourraient expliquer la variabilité retrouvée au regard des effets des OP sur la biomécanique.
La deuxième étude a apporté des informations précieuses et inédites sur le comportement dynamique des OP à la marche. La cinématique du contour des OP a été utilisée pour prédire la déformation de leur surface plantaire pendant la marche chez 13 individus ayant des pieds normaux en utilisant un réseau de neurones artificiels. Une erreur moyenne inférieure à 0,6 mm a été obtenue pour nos prédictions. En plus de la précision des prédictions, le modèle a été capable de différencier le patron de déformations pour deux OP de rigidités différentes et entre les participants inclus dans l’étude.
Enfin, dans une troisième étude, nous avons identifié la relation entre la déformation des OP personnalisées et la biomécanique du pied à la marche chez 17 personnes avec des pieds plats. L'utilisation de modèles linéaires mixtes a permis d’exprimer les variations de la déformation des OP dans différentes régions en fonction des variables cinématiques du pied et de pressions plantaires. Cette étude a montré que l'interaction pied-OP varie selon les différentes régions de l’OP et les différentes phases du cycle de marche. Ainsi, des lignes directrices préliminaires ont été fournies afin de standardiser et optimiser la conception des OP.
Dans l'ensemble, les résultats de cette thèse justifient l'importance d’'intégrer des caractéristiques dynamiques du pied de chaque individu dans la conception d'OP personnalisées. Des études futures pourraient étendre les modèles de prédiction de l'interaction pied-OP en incluant d'autres paramètres biomécaniques tels que les moments articulaires, les activations musculaires et la morphologie du pied. De tels modèles pourraient être utilisés pour développer des fonctions coût pour l'optimisation de la conception des OP par une approche itérative utilisant la simulation par les éléments finis. / Foot orthoses (FOs) are frequently used medical devices to manage overuse injuries and pain in flatfoot individuals. Wearing FOs can result in improving the biomechanical alterations attributed to flatfoot deformity such as the loss of medial longitudinal arch and excessive foot pronation. However, a lack of a clear understanding of the function of FOs contributes to the highly variable FOs prescribed in clinical practice. The objective of this thesis was to deepen the knowledge about the biomechanical outcomes of FOs and to formulate the dynamic behaviour of FOs as a function of foot biomechanics during gait.
The primary study investigated how different designs of FOs impose alterations in foot motion and loading. This objective was achieved through a systematic review of all literature reporting the kinematics and kinetics of the lower body during walking with FOs in healthy individuals. The inclusion criteria narrowed the studies to the ones which reported the outcomes for common designs of FOs, namely posting, arch support, and heel support. The review identified some evidence that FOs with medial posting can decrease ankle eversion moment. No significant evidence was found in our meta-analysis for the efficiency of arch supported and heel supported FOs. The findings of this study revealed that differences in FO design and material as well as foot characteristics of participants could explain the variations in biomechanical outcomes of FOs.
The second study provided valuable information on the dynamic behaviour of customized FOs. The kinematics of FO contour was used to predict the deformation of FO plantar surface in 13 healthy individuals during walking using an artificial intelligence approach. An average error below 0.6 mm was achieved for our predictions. In addition to the prediction accuracy, the model was capable to differentiate between different rigidities of FOs and between included participants in terms of range and pattern of deformation.
Finally, the third study identified the relationship between the deformation of customized FOs and foot biomechanics in 17 flatfoot individuals during walking. The use of linear mixed models made it possible to identify the variables of foot kinematics and region-dependent plantar pressure that could explain the variations in FO deformation. This study showed that the foot-FO interaction changes over different regions of FO and different phases of gait cycle. In addition, some preliminary guidelines were provided to standardize and optimize the design of FOs.
Overall, the results of this thesis justify the importance of incorporating the dynamic characteristics of each individual’s foot into the design of customized FOs. Future studies can extend the predictive models for foot-FO interactions by including other determinants of foot biomechanics such as joint moments, muscle activation, and foot morphology. Based on such extended models, the cost functions could be devised for optimizing the designs of customized 3D printed FOs through an iterative approach using finite element modeling.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/25296
Date08 1900
CreatorsHajizadeh, Maryam
ContributorsBegon, Mickaël
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageEnglish
Typethesis, thèse
Formatapplication/pdf et application/octet-stream

Page generated in 0.0032 seconds