Return to search

Comportement mécanique de la plaque de plâtre étudié par tomographie et essais mécaniques in-situ / Mechanical behavior of plasterboard studied by tomography and in-situ mechanical testing

Une plaque de plâtre allégée est un produit constituée d’un cœur, « mousse de plâtre », dont la porosité peut atteindre 75% et de revêtements de carton. Il est important de comprendre et caractériser le comportement mécanique de la plaque de plâtre pour optimiser le compromis résistance thermique / tenue mécanique. Pour répondre à cet objectif, des méthodologies spécifiques de corrélation d’images numériques et d’identification du comportement mécanique dans des régimes fortement non-linéaires (endommagement, effondrement de la porosité, fissuration macroscopique…) ont été développées et mises en œuvre. Une première classe de propriétés mécaniques, conditionnant la manutention et la pose des plaques, concerne la tenue à la flexion. Des essais de flexion trois et quatre points ont été réalisés jusqu’à la rupture. La corrélation d’images numériques 2D a été utilisée pour suivre la cinématique de l’essai. Le comportement de la plaque de plâtre en flexion a été identifié grâce à une description continue et homogénéisée de type poutre où la dégradation progressive de la rigidité de la plaque est décrite par une loi d’endommagement. Une procédure d’identification spécifique est présentée où imperfections expérimentales et brisures éventuelles de symétrie sont prises en compte. L’analyse montre que le comportement de la plaque en flexion est essentiellement piloté par les propriétés mécaniques de la face cartonnée et de la qualité de l’interface papier-plâtre. Le mécanisme de rupture en flexion a été également identifié par des essais in-situ dans un tomographe. Une deuxième catégorie de propriétés mécaniques concerne un essai normatif d’arrachement. Grâce à des tests réalisés au sein d’un tomographe, et à l’analyse de la cinématique par corrélation d’images volumiques, les différentes étapes clefs ont été identifiées, et la compaction du cœur par effondrement de la porosité sous compression a été reconnu comme le facteur limitant. Dans le but de mieux comprendre ce mécanisme de ruine des essais d’indentation sphérique tomographiés ont été réalisés sur des échantillons de mousse constitutive du cœur de la plaque. Sous l’indenteur, une transition brutale entre comportement élastique et compaction forte accompagnée d’un effondrement de la porosité est visible. Pour répondre à la nécessité d’estimer finement l’état de déformation multiaxiale qui caractérise cette transition, une procédure originale de corrélation d’images volumiques intégrée a été développée. Elle s’appuie sur un code commercial d’éléments finis comme moyen de générer une base cinématique adaptée à l’essai d’indentation sphérique. Le couplage d’essais mécaniques in-situ, la corrélation d’images volumiques et la simulation numérique d’une part, et l’intégration d’informations connues a priori dans la démarche d’identification d’autre part ont permis d’identifier un critère de ruine local. Le comportement triaxial du plâtre poreux a été caractérisé également via des essais triaxiaux homogènes, en suivant différents trajets de chargement. Le comportement triaxial du plâtre moussé a été identifié. Les résultats obtenus sont en accord avec les résultats de l’identification conduite sur l’essai d’indentation. / Lightweight plasterboard is a product composed of a "plaster foam" core whose porosity can reach 75% lined with two sheets of paper. To optimize the compromise between thermal resistance and mechanical strength, it is important to understand and characterize the mechanical behavior of the plasterboard. In the present work, specific methodologies for digital image correlation and identification of the mechanical behavior in highly nonlinear regimes (damage, collapse of porosity, macroscopic cracking ...) have been developed and implemented. A first set of mechanical properties, crucial for handling and placarding, concerns the bending strength. Three and four points bending tests were performed until failure. Digital image correlation was used to follow the kinematic of the test. The behavior of the plasterboard has been identified through a homogenized continuum description based on plate kinematic where the progressive degradation of bending stiffness is described through a damage law. A specific procedure for identification is presented where experimental imperfections and symmetry breakdown are tolerated and accounted for. The analysis shows that the mechanical behavior of the plasterbaord in bending test is controlled primarily by the mechanical properties of the paper lining and the quality of gypsum / paper interface. The failure mechanism in bending test was also identified through in-situ tests performed inside the tomograph. A second category of mechanical properties relates to a normative test “Nail pull test”. Through tests conducted inside the tomograph and the analysis of the kinematics by digital volume correlation, the different key stages of the failure mechanism have been identified. The compaction of the core by the collapse of porosity in compression has been recognized as the limiting factor. In order to better understand the compaction mechanism in-situ spherical indentation tests were performed on foamed samples prepared from the board core. The results from the in-situ experiment show that a compacted zone develops under the indenter, displaying a very sharp boundary with the undamaged material that behaves elastically. To meet the need for estimating accurately the state of multiaxial strain that characterizes this transition, a new methodology is presented. It is an integrated digital volume correlation based on a library of fields adapted to the spherical indentation test and computed from commercial finite element software. Coupling in-situ mechanical tests, digital volume correlation and numerical simulations on the one hand, and integration a priori known information in the identification process on the other hand allowed us to identify a local failure criterion. The behavior of porous plaster was also characterized via homogeneous triaxial tests, by following different loading paths. The triaxial behavior of foamed plaster has been identified. The results are in agreement with those obtained via the identification procedure conducted on the spherical indentation tests.

Identiferoai:union.ndltd.org:theses.fr/2014DENS0010
Date28 March 2014
CreatorsBouterf, Amine
ContributorsCachan, Ecole normale supérieure, Roux, Stéphane
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds