La radiothérapie basée sur l'utilisation des photons de haute énergie (rayons X) est l'approche la plus courante dans le traitement du cancer. Toutefois, elle est limitée par la tolérance des tissus sains. Par conséquent, il est d'un intérêt majeur de développer de nouvelles techniques et protocoles pour améliorer le ciblage dans les tumeurs. Dans cette perspective, la hadronthérapie (irradiation de la tumeur par des protons ou des ions carbone) est considérée comme l'une des techniques les plus prometteuses car le dépôt d'énergie est maximum en fin de parcours, ce qui permet de cibler la tumeur. Pourtant, l’utilisation de cette modalité reste limitée du fait de la dose reçue par les tissus sains situés à l'entrée du faisceau.Pour améliorer les performances des thérapies par radiation, une nouvelle stratégie basée sur la combinaison de nanoparticules métalliques (nano-médecine) avec des rayonnements ionisants a été développée par le groupe. En effet, les nanoparticules ont une chimie de surface remarquable qui permet de les fonctionnaliser avec des ligands qui les rendent plus futiles et moins reconnus des macrophages afin de les concentrer dans les tumeurs.Le but de mon travail a été de développer des nanoparticules à base de platine (NPs de platine pelylée et des nanoparticules bimétalliques) visant à améliorer l’effet des rayonnements ionisants (photons et ions carbone) dans les cellules.Une méthode originale de synthèse en une seule étape combinant la radiolyse et la PEGylation in situ a été optimisée. Cette méthode a permis d’obtenir des NPs stables, de taille homogène (cœur métallique proche de 3 nm).L'impact biologique de ces nouvelles NPs a été évalué sur deux lignées de cellules cancéreuses humaines. Il a été observé que les NPs, non-toxiques, ont un mode d’internalisation qui dépend de la lignée cellulaire. Celles-ci sont, dans tous les cas, localisées exclusivement dans le cytoplasme. Les NPs de platine développées dans ce travail permettent d’amplifier significativement la destruction des cellules cancéreuses, en particulier lorsqu’un faisceau médical d’ions carbone est utilisé comme rayonnement. Les mécanismes moléculaires à l’origine de cet effet ont été étudiés grâce à l’utilisation d’une nanosonde biologique. Ces expériences ont montré que les NPs sont responsables de l’augmentation de dommages nanométriques, qui peuvent être létaux pour les cellules. Cet effet est attribué à des processus électroniques d’activation et de reneutralisation de la NP qui engendre une forte perturbation dans le volume nanométrique qui l’entoure tel que la production groupée de radicaux fortement réactifs et toxiques.En conclusion, ce travail à l’interface de la physique, chimie et biologie montre les capacités des NPs à base de platine à améliorer l’éradication par radiation des cellules cancéreuses. / Radiotherapy based on the use of high energy photons (X-rays) is the most common approach in cancer treatment. However, its implementation is limited by the tolerance of healthy tissue. Therefore, it is of major interest the development of new techniques and protocols to improve the selectivity of radiation effects within the tumor. In this perspective, the hadrontherapy (tumor irradiation by protons or carbon ions) is considered as one of the most promising techniques due to the energy deposition of ions in depth which is maximum at the end of the track. However, the use of this modality remains restricted by the lower but significant damage induced to the normal tissue located at the entrance of the ion beam.To improve the performance of radiation therapies, a new strategy based on the combination of metallic nanoparticles (nanomedicine) with ionizing radiations was studied. These treatments have been developed by the group. Indeed, the nanoparticles present a remarkable surface chemistry that allows their functionalization with ligands which make them less recognized by macrophages allowing an important accumulation of these nano-agents selectively into the tumors.The goal of my work was thus to develop platinum based nanoparticles (mono- and bimetallic Pt NPs) to enhance the effect of radiations (photons and carbon ions) into the cells.A novel one-step method of synthesis combining radiolysis and in situ PEGylation has been optimized. This method enabled to obtain stable NPs with a uniform size (metallic core diameter close to 3 nm) and shape. The biological impact of these new Pt NPs was evaluated in two human cancer cell lines.It has been observed that non-toxic Pt NPs have an internalization pathway that strongly depends on the cell line. These are, in all cases, exclusively localized in the cytoplasm. The Pt NPs developed in this work significantly enhanced cancer cell killing, particularly when medical carbon ions are used to irradiate.The molecular mechanisms underlying this effect were investigated through the use of a bio-nanoprobe. These experiments showed that NPs are responsible for the increase of nanometric damage, lesions that can be lethal to cells. This effect is attributed to an electronic activation processes and to the reneutralisation of NPs, which generates a strong perturbation in the surrounding nanometer volume producing highly reactive and toxic free radical clusters.In conclusion, this work at the interface of physics, chemistry and biology shows the potential of platinum NPs to improve the eradication of cancer cells by radiation.
Identifer | oai:union.ndltd.org:theses.fr/2016SACLS456 |
Date | 25 November 2016 |
Creators | Salado Leza, Daniela |
Contributors | Université Paris-Saclay (ComUE), Lacombe, Sandrine |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0026 seconds