When human’s visual system is looking at two pictures taken in some indoor location, it is fairly easy to tell whether they were taken in exactly the same place, even when the location has never been visited in reality. It is possible due to being able to pay attention to the multiple factors such as spatial properties (windows shape, room shape), common patterns (floor, walls) or presence of specific objects (furniture, lighting). Changes in camera pose, illumination, furniture location or digital alteration of the image (e.g. watermarks) has little influence on this ability. Traditional approaches to measuring the perceptual similarity of images struggled to reproduce this skill. This thesis defines the Indoor scene verification (ISV) problem as distinguishing whether two indoor scene images were taken in the same indoor space or not. It explores the capabilities of state-of-the-art perceptual similarity metrics by introducing two new datasets designed specifically for this problem. Perceptual hashing, ORB, FaceNet and NetVLAD are evaluated as the baseline candidates. The results show that NetVLAD provides the best results on both datasets and therefore is chosen as the baseline for the experiments aiming to improve it. Three of them are carried out testing the impact of using the different training dataset, changing deep neural network architecture and introducing new loss function. Quantitative analysis of AUC score shows that switching from VGG16 to MobileNetV2 allows for improvement over the baseline. / Med mänskliga synförmågan är det ganska lätt att bedöma om två bilder som tas i samma inomhusutrymme verkligen har tagits i exakt samma plats även om man aldrig har varit där. Det är möjligt tack vare många faktorer, sådana som rumsliga egenskaper (fönsterformer, rumsformer), gemensamma mönster (golv, väggar) eller närvaro av särskilda föremål (möbler, ljus). Ändring av kamerans placering, belysning, möblernas placering eller digitalbildens förändring (t. ex. vattenstämpel) påverkar denna förmåga minimalt. Traditionella metoder att mäta bildernas perceptuella likheter hade svårigheter att reproducera denna färdighet . Denna uppsats definierar verifiering av inomhusbilder, Indoor SceneVerification (ISV), som en ansats att ta reda på om två inomhusbilder har tagits i samma utrymme eller inte. Studien undersöker de främsta perceptuella identitetsfunktionerna genom att introducera två nya datauppsättningar designade särskilt för detta. Perceptual hash, ORB, FaceNet och NetVLAD identifierades som potentiella referenspunkter. Resultaten visar att NetVLAD levererar de bästa resultaten i båda datauppsättningarna, varpå de valdes som referenspunkter till undersökningen i syfte att förbättra det. Tre experiment undersöker påverkan av användning av olika datauppsättningar, ändring av struktur i neuronnätet och införande av en ny minskande funktion. Kvantitativ AUC-värdet analys visar att ett byte frånVGG16 till MobileNetV2 tillåter förbättringar i jämförelse med de primära lösningarna.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-288856 |
Date | January 2020 |
Creators | Finfando, Filip |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2020:852 |
Page generated in 0.0024 seconds