Die Arbeit untersucht einen überraschenden Zusammenhang zwischen Halbflüssen von holomorphen Selbstabbildungen auf einfach zusammenhängenden Gebieten und Halbgruppen, die von Poincaré-Steklov Operatoren erzeugt werden. Mithilfe von Erzeuger von Kompositionshalbgruppen auf Banachräumen von analytischen Funktionen werden insbesondere Dirichlet-zu-Neumann und Dirichlet-zu-Robin Operatoren konstruiert. Dieser Zugang eröffnet einen neuen Ansatz für das Studium partiellen Differentialgleichungen, die mit solchen Operatoren assoziiert sind. / We study a surprising connection between semiflows of holomorphic selfmaps of a simply connected domain and semigroups generated by Poincaré-Steklov operators. In particular, by means of generators of semigroups of composition operators on Banach spaces of analytic functions, we construct Dirichlet-to-Neumann and Dirichlet-to-Robin operators. This approach gives new insights to the theory of partial differential equations associated with such operators.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:36097 |
Date | 13 November 2019 |
Creators | Perlich, Lars |
Contributors | Chill, Ralph, Chalendar, Isabelle, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0013 seconds