Return to search

Functional study of the role played by nucleolar proteins in the control of neural progenitor homeostasis using zebrafish as a model / Etude fonctionnelle de gènes codants pour des protéines nucléolaires dans la biologie des cellules souches neurales chez le poisson zèbre

L’identité des cellules souches et des progéniteurs neuraux, comme celle de tout type cellulaire, est caractérisée par des signatures moléculaires spécifiques qui dépendent de l’environnement dans lesquelles les cellules se trouvent. Ainsi, il est primordial d’étudier ces cellules dans un contexte in vivo. Le toit optique du poisson zèbre est un modèle idéal pour ce type d’étude. En effet, c’est une large partie du cerveau moyen localisée en position dorsale et qui présente la particularité de croitre de manière orientée tout au long de la vie de l’animal grâce aux cellules neuroépitheliales présentes à sa périphérie (dans la « peripheral midbrain layer », PML). De plus, les progéniteurs neuroépithéliaux, les progéniteurs lents et les cellules post-mitotiques sont localisées dans des domaines adjacents du toit, conséquence de sa croissance orientée. Chaque population cellulaire est marquée par des profils d’expression particuliers. Ainsi, une recherche dans la base de données ZFIN nous a permis d’identifier environ 50 gènes ayant une forte expression dans les cellules de la PML (progéniteurs neuroépithéliaux). De façon intéressante, beaucoup de « gènes PML » codent pour des facteurs de la biogenèse des ribosomes. L’accumulation de ce type de transcrits dans les progéniteurs lents était surprenante. Ainsi, au cours de mon doctorat, j’ai étudié le rôle spécifique des facteurs de la biogenèse des ribosomes dans le maintien des cellules neuroepithéliales de la PML. En effet, bien qu’il soit généralement admis que la biogenèse des ribosomes est un processus essentiel dans toutes les cellules, il a été récemment démontré que plusieurs facteurs nécessaires à la synthèse des ribosomes ont un rôle tissu-spécifique. Par exemple, Notchless est requis pour la survie de la masse cellulaire interne de l’embryon préimplantatoire de souris. Récemment, des expériences de knock-out conditionnel chez la souris ont montré que Notchless était nécessaire au maintien des cellules souches hématopoïétiques et intestinales, mais pas à celui des cellules différenciées. En effet, en absence de Notchless dans les cellules souches, la grosse sous-unité ribosomique (60S) ne peut pas être exportée hors du noyau et s’accumule. Au contraire, dans les cellules différenciées, où Notchless n’est pas indispensable, cette accumulation n’est pas observée. J’ai commencé une étude fonctionnelle basée sur la surexpression conditionnelle de la forme dominante-négative du gène notchless homolog 1 (nle1, homologue poisson zèbre du gène Notchless mammifère). Selon mon hypothèse, les progéniteurs lents de la PML (Slow amplifying progenitors, SAPs) pourraient avoir besoin de Notchless pour la maturation de la sous-unité 60S, contrairement aux cellules différenciées qui pourraient survivre après la délétion de ce gène. Des expériences sont encore en cours, mais nous avons déjà pu démontrer que nle1 joue un rôle crucial dans la survie des progénitéurs neuroépithéliaux de la PML. En parallèle, j’ai étudié des lignées de poisson-zèbre mutantes pour des gènes codants pour des composants du complexe de snoRNP (box C/D small nucleolar ribonucleoprotein : Fibrillarine, Nop56, Nop58). Les trois mutants présentent des phénotypes similaires, en particulier une apoptose massive et une dérégulation du cycle cellulaire dans l’ensemble du toit optique à 48 heures de développement. Étonnamment, ces résultats sont en faveur d’un arrêt du cycle cellulaire à la transition G2/M. Ainsi, cette étude pourrait permettre de mettre en évidence de nouveaux mécanismes d’arrêt du cycle cellulaire lors de défauts de biogenèse des ribosomes. L’ensemble de ces résultats montrent comment les facteurs de la biogenèse des ribosomes (tout comme le processus) contribue à la régulation fine de l’homéostasie cellulaire, et donc à la détermination de l’identité des cellules progénitrices. / In neural stem cells (NSCs) and neural progenitors (NPs), as in other cell types, cell identity is characterized by specific molecular signatures that depend on the environment provided by neighboring cells. Thus, it is important to study progenitor cells in vivo. The zebrafish optic tectum (OT) is a suitable model for that purpose. Indeed, this large structure of the dorsal midbrain displays life-long oriented growth supported by neuroepithelial cells present at its periphery (in the peripheral midbrain layer, PML). Moreover, neuroepithelial progenitors, fast-amplifying progenitors and post-mitotic cells are found in adjacent domains of the OT, as a consequence of its oriented growth. Each cell population is marked by concentric gene expression patterns. Interestingly, a datamining of the ZFIN gene expression database allowed us to identify around 50 genes displaying biased expression in PML cells (neuroepithelial progenitors). Interestingly, many “PML genes” code for ribosome biogenesis factors. The accumulation of transcripts for such ubiquitously expressed genes in SAPs was very surprising so during my thesis I examined whether ribosome biogenesis may have specific roles in these neuroepithelial cells, while improving our knowledge. Indeed, although it is generally admitted that ribosome biogenesis is essential in all cells, it has been shown quite recently that several components of the ribosome biogenesis have tissue restricted roles. For example, Notchless is required for the survival of the inner cell mass in the preimplantation mouse embryo. More recently, conditional knock-out experiments in mice showed that Notchless is necessary for the maintenance of hematopoietic stem cells and intestinal stem cells, but not for committed progenitors and differentiated cells. Indeed in the absence of Notchless in stem cells, the immature 60S subunit cannot be exported from the nucleus and accumulates. This does not happen in differentiated cells where Notchless is dispensable. I started a functional study based on the conditional overexpression of a dominant-negative form of the gene notchless homolog 1 (nle1, the zebrafish homolog of the mammalian gene Notchless). My hypothesis was that the PML slow-amplifying progenitors (SAPs) may require Notchless for the maturation of the 60S subunit, but not the differentiated cells which could survive also after the deletion of this gene. Experiments are still underway. So far we could demonstrate that nle1 has a crucial role in SAPs. I studied zebrafish mutants for genes coding for the components of the box C/D small nucleolar ribonucleoprotein (snoRNP) complex (Fibrillarin, Nop56, Nop58). Mutants displayed a similar phenotype with massive apoptosis and a deregulation of the cell cycle in the whole tectum at 48hpf. Our data suggest a cell cycle arrest at the G2/M transition, highlighting novel possible mechanisms of cell cycle arrest upon impaired ribosome biogenesis. All together, these data highlight how ribosome biogenesis factors and the whole ribosome biogenesis contribute to the fine regulation of cell homeostasis thereby contributing to the determination of progenitor cell identity.

Identiferoai:union.ndltd.org:theses.fr/2015PA112237
Date29 September 2015
CreatorsBrombin, Alessandro
ContributorsParis 11, Joly, Jean-Stéphane
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0019 seconds