Return to search

Classification d'images RSO polarimétriques à haute résolution spatiale sur site urbain / High – Resolution Polarimetric SAR image classification on urban areas

Notre recherche vise à évaluer l’apport d’une seule image polarimétrique RSO (Radar à Synthèse d’Ouverture) à haute résolution spatiale pour classifier les surfaces urbaines. Pour cela, nous définissons plusieurs types de toits, de sols et d’objets.Dans un premier temps, nous proposons un inventaire d’attributs statistiques, texturaux et polarimétriques pouvant être utilisés dans un algorithme de classification. Nous étudions les lois statistiques des descripteurs et montrons que la distribution de Fisher est bien adaptée pour la plupart d’entre eux. Dans un second temps, plusieurs algorithmes de classification vectorielle supervisée sont testés et comparés, notamment la classification par maximum de vraisemblance basée sur une distribution gaussienne, ou celle basée sur la distribution de Wishart comme modèle statistique de la matrice de cohérence polarimétrique, ou encore l’approche SVM. Nous proposons alors une variante de l’algorithme par maximum de vraisemblance basée sur une distribution de Fisher, dont nous avons étudié l’adéquation avec l’ensemble de nos attributs. Nous obtenons une nette amélioration de nos résultats avec ce nouvel algorithme mais une limitation apparaît pour reconnaître certains toits. Ainsi, la forme des bâtiments rectangulaires est reconnue par opérations morphologiques à partir de l’image d’amplitude radar. Cette information spatiale est introduite dans le processus de classification comme contrainte. Nous montrons tout l’intérêt de cette information puisqu’elle empêche la confusion de classification entre pixels situés sur des toits plats et des pixels d’arbre. De plus, nous proposons une méthode de sélection des attributs les plus pertinents pour la classification, basée sur l’information mutuelle et une recherche par algorithme génétique. Nos expériences sont menées sur une image polarimétrique avec un pixel de 35 cm, acquise en 2006 par le capteur aéroporté RAMSES de l’ONERA. / In this research, our aim is to assess the potential of a one single look high spatial resolution polarimetric radar image for the classification of urban areas. For that purpose, we concentrate on classes corresponding to different kinds of roofs, objects and ground surfaces.At first, we propose a uni-variate statistical analysis of polarimetric and texture attributes, that can be used in a classification algorithm. We perform a statistical analysis of descriptors and show that the Fisher distribution is suitable for most of them. We then propose a modification of the maximum likelihood algorithm based on a Fisher distribution; we train it with all of our attributes. We obtain a significant improvement in our results with the new algorithm, but a limitation appears to recognize some roofs.Then, the shape of rectangular buildings is recognized by morphological operations from the image of radar amplitude. This spatial information is introduced in a Fisher-based classification process as a constraint term and we show that classification results are improved. In particular, it overcomes classification ambiguities between flat roof pixels and tree pixels.In a second step, some well-known algorithms for supervised classification are used. We deal with Maximum Likelihood based on complex Gaussian distribution (uni-variate) and multivariate Complex Gaussian using coherency matrix. Meanwhile, the support vector machine, as a nonparametric method, is used as classification algorithm. Moreover, a feature selection based on Genetic Algorithm using Mutual Information (GA-MI) is adapted to introduce optimal subset to classification method. To illustrate the efficiency of subset selection based on GA-MI, we perform a comparison experiment of optimal subset with different target decompositions based on different scattering mechanisms, including the Pauli, Krogager, Freeman, Yamaguchi, Barnes, Holm, Huynen and the Cloude decompositions. Our experiments are based on an image of a suburban area, acquired by the airborne RAMSES SAR sensor of ONERA, in 2006, with a spatial spacing of 35 cm. The results highlight the potential of such data to discriminate some urban land cover types.

Identiferoai:union.ndltd.org:theses.fr/2014CNAM0927
Date28 April 2014
CreatorsSoheili Majd, Maryam
ContributorsParis, CNAM, Polidori, Laurent, Simonetto, Elisabeth
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds