Presentaremos la demostración del Teorema probado por Louis de Branges en (1984): “Si f:D C es analítica e inyectiva cuya expansión de series de potencias es dada por ∑_(n=1)^∞▒〖a_n z^n 〗 con a_1 = 1, entonces |a_n |n para todo n 1. Además si la igualdad se da para algún n 1, entonces f(z)=z/〖(1-αz)〗^2 , pertenece a C, con |α|=1 y todo z en D, donde D es el disco unitario en el plano complejo”. En un primer momento, presentaremos las conjeturas de Robertson y de Bieberbach una vez que la conjetura de Milin implica la de Robertson, que a su vez alude a de Bieberbach. Lo que Branges probo, en verdad fue la conjetura propuesta por Milin en (1967), que afirma: “Si f:D C es analítica e inyectiva cuya expansión de series de potencias es dada por ∑_(n=1)^∞▒〖a_n z^n 〗 con a_1 = 1, entonces ∑_(m=1)^n▒∑_(k=1)^m▒〖(k|γ_k |^2- 1/k) ≤0〗 donde γ_k son los coeficientes de expansión de series de potencias de la función (1/2) log(z^(-1) f(z))" la cual implica la conjetura de Bieberbach.
Identifer | oai:union.ndltd.org:Cybertesis/oai:cybertesis.unmsm.edu.pe:cybertesis/3644 |
Date | January 2013 |
Creators | Pérez Armijo, Jhonny Edward |
Contributors | Contreras Chamorro, Pedro Celso |
Publisher | Universidad Nacional Mayor de San Marcos |
Source Sets | Universidad Nacional Mayor de San Marcos - SISBIB PERU |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/bacherlorThesis |
Source | Universidad Nacional Mayor de San Marcos, Repositorio de Tesis - UNMSM |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0107 seconds