Return to search

Teorema de Branges

Presentaremos la demostración del Teorema probado por Louis de Branges en (1984): “Si f:D C es analítica e inyectiva cuya expansión de series de potencias es dada por ∑_(n=1)^∞▒〖a_n z^n 〗 con a_1 = 1, entonces |a_n |n para todo n  1. Además si la igualdad se da para algún n  1, entonces f(z)=z/〖(1-αz)〗^2 , pertenece a C, con |α|=1 y todo z en D, donde D es el disco unitario en el plano complejo”. En un primer momento, presentaremos las conjeturas de Robertson y de Bieberbach una vez que la conjetura de Milin implica la de Robertson, que a su vez alude a de Bieberbach. Lo que Branges probo, en verdad fue la conjetura propuesta por Milin en (1967), que afirma: “Si f:D C es analítica e inyectiva cuya expansión de series de potencias es dada por ∑_(n=1)^∞▒〖a_n z^n 〗 con a_1 = 1, entonces ∑_(m=1)^n▒∑_(k=1)^m▒〖(k|γ_k |^2- 1/k) ≤0〗 donde γ_k son los coeficientes de expansión de series de potencias de la función (1/2) log⁡(z^(-1) f(z))" la cual implica la conjetura de Bieberbach.

Identiferoai:union.ndltd.org:Cybertesis/oai:cybertesis.unmsm.edu.pe:cybertesis/3644
Date January 2013
CreatorsPérez Armijo, Jhonny Edward
ContributorsContreras Chamorro, Pedro Celso
PublisherUniversidad Nacional Mayor de San Marcos
Source SetsUniversidad Nacional Mayor de San Marcos - SISBIB PERU
LanguageSpanish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/bacherlorThesis
SourceUniversidad Nacional Mayor de San Marcos, Repositorio de Tesis - UNMSM
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0107 seconds