Dans le premier chapitre on précise les définitions et notations utilisées par la suite et on rappelle certains résultats nécessaires ultérieurement. Dans le deuxième chapitre on définit à partir de deux ensembles convexes K1 et K2, le produit tensoriel direct note K1 cercle X K2 et polaire K1 d'Alemb. K2. Au troisième chapitre on étudie quelques propriétés faciales de K1 cercle x K2 et de K1d'alemb. K2. Au quatrième chapitre on étudie la relation entre K1 cercle X K2 et K1d'Alemb. K2. Enfin on étudie le produit tensoriel direct et le produit tensoriel polaire dans les cas suivants : K1 et k2 sont des hypersphères, K1 et K2 sont des polaires d'hypercubes, K1 et K2 sont des hypercubes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00294618 |
Date | 26 June 1981 |
Creators | Fonlupt, Jean |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | habilitation ࠤiriger des recherches |
Page generated in 0.0011 seconds