Les algèbres de Hecke apparaissent naturellement dans la théorie des représentations des groupes réductifs sur des corps finis ou p-adiques. Ces algèbres sont des spécialisations des algèbres de Iwahori-Hecke qui peuvent être définies de manière combinatoire à partir d'un groupe de Coxeter et d'une fonction de poids sans faire référence à la théorie des groupes réductifs. C'est ce point de vue qui est adopté dans ce travail. Les cellules de Kazhdan-Lusztig jouent un rôle fondamental dans l'étude des algèbres de Iwahori-Hecke. Le but de ce travail est d'étudier les cellules de Kazhdan-Lusztig dans les groupes de Weyl affines à paramètres inégaux. Les principaux résultats de cette thèse sont l'invariance des polynômes de Kazhdan-Lusztig par translation, la décomposition de la cellule bilatère minimale en cellules gauches et la décomposition du groupe de Weyl affine de type G en cellules pour toute une classe de fonctions de poids.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00300796 |
Date | 03 June 2008 |
Creators | Guilhot, Jeremie |
Publisher | Université Claude Bernard - Lyon I |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds