Return to search

Tailoring Pore Size and Polarity for Liquid Phase Adsorption by Porous Carbons

Adsorption is a versatile purification technique to selectively separate different peptide fractions from a mixture using mild operation conditions. Porous carbons are ideally suited to separate ACE-inhibiting dipeptides by combining tailored size exclusion and polarity selectivity. The desired peptide fraction is mostly hydrophobic and very small and should adsorb inside hydrophobic micropores.

The second topic of this thesis is linked to energy storage. The lithium-sulfur battery is a promising alternative to common lithium-ion batteries with theoretical capacities of up to 1672 mAh g−1 sulfur. The second aim of this thesis is to conduct an in-depth investigation of polysulfides interacting with selected carbon materials in a simplified battery electrolyte environment. The focus of this study is laid on the impact of surface polarity and pore size distribution of the carbon to develop a quantitative correlation between polysulfide retention and porosity metrics.

Both, the enrichment of ACE-inhibitors and the retention of polysulfides rely on liquid phase adsorption in porous materials, linking the above mentioned topics. This thesis not only aims to develop an enrichment process or to find a superior battery cathode but also strives to explore structure-property relationships that are universally valid. Understanding the complex interplay of pore size and polarity leading to selective interactions between pore wall and the adsorbed species is given a high priority.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-223482
Date29 May 2017
CreatorsHippauf, Felix
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. rer. nat. habil. Stefan Kaskel, Prof. Dr. rer. nat. Dr.-Ing. habil. Thomas Henle
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.2485 seconds