Return to search

Modulations biochimiques de l'activité des canaux K[indice supérieur +] de type GK[indice inférieur Ca] du sarcolemme des muscles lisses des voies respiratoires par le monoxyde d'azote

Le but de cette étude était d'élucider les mécanismes biochimiques qui régulent les canaux K$\sp+$ de type (GK$\rm\sb{Ca}),$ impliqués dans le contrôle du tonus des muscles lisses des voies respiratoires (MLVR). Des mesures pharmacologiques ont permis de démontrer que le 3-morpholino-sydnonimine (SIN-1) relaxe des fragments de bronches de rat précontractées par 0.2 $\mu$M carbachol, de façon concentration-dépendante. Par contre, lorsque la contribution de la conductance potassique (GK) est éliminée, en présence de 135 mM KCl dans le milieu extracellulaire ou lorsque la guanylate cyclase soluble (GCs) est inhibée par 10 $\mu$M de bleu de méthylène (BM), l'effet relaxant du SIN-1 est moins efficace, ce qui suggère que le monoxyde d'azote (NO$\sp\cdot)\sp*$ pourrait activer plusieurs effecteurs pour induire son effet relaxant via deux voies: une voie dépendante du GMPc et une autre qui serait indépendante de ce messager. Un autre objectif envisagé était de démontrer que le NO avait un effet relaxant indépendant du GMPc, et qu'il pourrait être dû, en partie, à une activation directe des GK$\rm\sb{Ca}.$ Les tests pharmacologiques montrent que 100 nM de charybdotoxine (ChTX), un inhibiteur spécifique des GK$\rm\sb{Ca},$ changent la sensibilité des MLVR au SIN-1 lorsque la GCs est inhibée, ce qui indique que les GK$\rm\sb{Ca}$ pourraient être activées directement par le NO. Ces résultats ont été confirmés au niveau moléculaire, suite à la reconstitution des canaux dans les BLP. Le SIN-1 (NO), mais pas ses métabolites, active les GK$\rm\sb{Ca}$ avec une EC$\sb{50}$ évaluée à 30 $\mu$M SIN-1. Afin de vérifier le mode d'activation direct des GK$\rm\sb{Ca}$ par le NO, des expériences ont été réalisées en présence de 5 mM DTT, un agent réducteur qui empêche le NO d'activer les GK$\rm\sb{Ca},$ seulement lorsqu'il est ajouté du côté intracytoplasmique (trans) du canal. Ces résultats tendent à prouver que l'activation directe des GK$\rm\sb{Ca}$ des MLVR, résulterait d'une interaction du NO avec les groupements des chaînes latérales d'acides aminés, situés sur les boucles intracellulaires de la sous-unité $\alpha,$ selon un mécanisme de nitrosylation**. En revanche, le DTT n'est plus capable de renverser l'effet du NO, ce qui suggère l'implication de d'autres groupements autres que les SH avec lesquels interagit le NO. En conclusion, cette étude a permis de montrer, pour la première fois, que le NO pourrait augmenter la P$\rm\sb{o}$ des canaux K$\sp+$ de type GK$\rm\sb{Ca}$ des MLVR par un mécanisme indirect (phosphorylation) catalysée par la PKG en présence du GMPc et par une interaction directe (nitrosylation) avec la sous-unité $\alpha$ du canal, sans altérer la conductance ni la sensibilité du canal au Ca$\sp{2+}$ et au voltage, ce qui fait de ce type de canal un effecteur sensible et efficace dans le contrôle de la relaxation des MLVR Le NO dans un milieu biologique se trouve dans un état radicalaire NO actif. $\sp{**}$nitrosylation est un terme qui désigne l'interaction covalente entre le NO et les groupements SH des protéines. [Symboles non conformes]

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/4089
Date January 1996
CreatorsAlioua, Abderrahmane
ContributorsRousseau, Éric
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageFrench
Detected LanguageFrench
TypeThèse
Rights© Abderrahmana Alioua

Page generated in 0.0027 seconds