Un défi à court terme pour les industriels de l’aéronautique est de concevoir des produits sûrs, fiables, compactes, basse consommation et à faible impact environnemental due à la forte concurrence et à l’augmentation des attentes des clients et des autorités de certification. Un défi à plus long terme pour ces organisations est de pérenniser leur savoir-faire et leur expertise qui sont menacés par le départ en retraite de générations d’experts, ingénieurs et techniciens. Relever ces défis n’est pas une tâche facile lorsque les produits concernés sont des systèmes mécatroniques embarqués tel que les systèmes d’actionnement électromécaniques. La conception de ces systèmes complexes nécessite l’intégration de savoirs très hétérogènes dû à l’interaction entre de nombreux métiers de l’ingénierie et entre les différentes lois de la physique qui les caractérisent. De plus, les systèmes mécatroniques embarqués sont constitués de nombreux composants interdépendants. Faire face à l’interdépendance des composants reste une tâche non-triviale et fondamentale du métier d’ingénieur. Ceci provoque des itérations coûteuses durant le cycle de conception et des solutions non-optimisées. Les techniques d’optimisation multidisciplinaire fournissent des fondements théoriques et des outils de calculs permettant l’optimisation de systèmes comportant un grand nombre de variables et des couplages multidisciplinaires. Dans le but d’utiliser ces techniques pour un dimensionnement rapide des produits mécatroniques, des tâches doivent être effectuées : représentation du savoir de conception, décomposition et coordination des modèles pour l’évaluation et l’optimisation des performances du système. Les modèles algébriques ont été choisis pour représenter les différents modèles de conception. Une nouvelle formulation d’optimisation multidisciplinaire est proposée. Elle permet des convergences rapides et s’avère robuste au changement d’échelle. Une approche basée sur la théorie des graphes et le calcul symbolique est proposée pour aider les ingénieurs à la mise en place de problèmes à grand nombre de variables et comportant des couplages multidisciplinaires. Une méthodologie de dimensionnement est présentée ainsi que l’outil logiciel associé. L’objectif principal est de permettre un dimensionnement global des systèmes mécatroniques en se souciant de la réutilisation du savoir et la prise de décision rapide. La méthodologie est illustrée sur un cas académique de système d’actionnement. Ensuite, des systèmes plus complexes sont étudiés. Tout d’abord, la conception d’un système d’actionnement de commandes de vol primaire est effectuée. Enfin, un système d’actionnement d’inverseur de poussée électrique est dimensionné / The critical short term challenge for contemporary aerospace industrial companies is to design safe, reliable, compact, low power consumption and low environmental impact products, forces driven by economic competition and the increasing expectations of customers and certification authorities. A long-term challenge for these organizations is to manage their knowledge and expertise heritage, which is jeopardized due to forthcoming retirement of the current generation of experts, engineers and technicians. Undertaking these challenges is particularly intricate when it comes to embedded mechatronic systems used in electro-mechanical actuation systems. The design of these complex systems involves heterogeneous knowledge due to the interface of multiple engineering specializations and the interacting physical laws that govern their behaviour. Additionally, embedded mechatronic systems are composed of several interdependent components and sub-systems. Dealing with interdependencies remains a non-trivial and fundamental aspect of modern engineering practice. This can result in costly iterations during the design process and final non-optimal solutions. Multidisciplinary System Design Optimization techniques provide theoretical foundations and computational tools for optimizing large and multidisciplinary systems. Tasks must be performed to apply such techniques for rapid initial sizing of mechatronic products: modelling the design knowledge, partitioning and coordinating the models for system performances analysis and optimization. Algebraic analysis functions are chosen to represent the design models. A new Multidisciplinary System Design Optimization formulation for fast and robust analysis is proposed. A theoretic graph approach using symbolic manipulation to assist designers in formulating large and multidisciplinary problems is outlined. A specific design methodology and its associated framework developed are presented. The general objective is to allow holistic sizing of mechatronic engineering systems with emphasis placed on model reusability and rapid decision making. The methodology is illustrated using a simple aerospace actuation system example. More complex actuation systems are then addressed. First, the design of an electro-mechanical primary flight control actuation system is examined, subsequently; the design methodology is applied to an electrical thrust reverser actuation system.
Identifer | oai:union.ndltd.org:theses.fr/2018ISAT0034 |
Date | 29 November 2018 |
Creators | Delbecq, Scott |
Contributors | Toulouse, INSA, Budinger, Marc |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds