• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Knowledge-Based Multidisciplinary Sizing and Optimization of Embedded Mechatronic Systems - Application to Aerospace Electro-Mechanical Actuation Systems / Aide à l'intégration des savoirs métiers pour le dimensionnement et l'optimisation multidisciplinaires de systèmes mécatroniques embarqués - Application aux systèmes d'actionnement aéronautiques à technologie électromécanique

Delbecq, Scott 29 November 2018 (has links)
Un défi à court terme pour les industriels de l’aéronautique est de concevoir des produits sûrs, fiables, compactes, basse consommation et à faible impact environnemental due à la forte concurrence et à l’augmentation des attentes des clients et des autorités de certification. Un défi à plus long terme pour ces organisations est de pérenniser leur savoir-faire et leur expertise qui sont menacés par le départ en retraite de générations d’experts, ingénieurs et techniciens. Relever ces défis n’est pas une tâche facile lorsque les produits concernés sont des systèmes mécatroniques embarqués tel que les systèmes d’actionnement électromécaniques. La conception de ces systèmes complexes nécessite l’intégration de savoirs très hétérogènes dû à l’interaction entre de nombreux métiers de l’ingénierie et entre les différentes lois de la physique qui les caractérisent. De plus, les systèmes mécatroniques embarqués sont constitués de nombreux composants interdépendants. Faire face à l’interdépendance des composants reste une tâche non-triviale et fondamentale du métier d’ingénieur. Ceci provoque des itérations coûteuses durant le cycle de conception et des solutions non-optimisées. Les techniques d’optimisation multidisciplinaire fournissent des fondements théoriques et des outils de calculs permettant l’optimisation de systèmes comportant un grand nombre de variables et des couplages multidisciplinaires. Dans le but d’utiliser ces techniques pour un dimensionnement rapide des produits mécatroniques, des tâches doivent être effectuées : représentation du savoir de conception, décomposition et coordination des modèles pour l’évaluation et l’optimisation des performances du système. Les modèles algébriques ont été choisis pour représenter les différents modèles de conception. Une nouvelle formulation d’optimisation multidisciplinaire est proposée. Elle permet des convergences rapides et s’avère robuste au changement d’échelle. Une approche basée sur la théorie des graphes et le calcul symbolique est proposée pour aider les ingénieurs à la mise en place de problèmes à grand nombre de variables et comportant des couplages multidisciplinaires. Une méthodologie de dimensionnement est présentée ainsi que l’outil logiciel associé. L’objectif principal est de permettre un dimensionnement global des systèmes mécatroniques en se souciant de la réutilisation du savoir et la prise de décision rapide. La méthodologie est illustrée sur un cas académique de système d’actionnement. Ensuite, des systèmes plus complexes sont étudiés. Tout d’abord, la conception d’un système d’actionnement de commandes de vol primaire est effectuée. Enfin, un système d’actionnement d’inverseur de poussée électrique est dimensionné / The critical short term challenge for contemporary aerospace industrial companies is to design safe, reliable, compact, low power consumption and low environmental impact products, forces driven by economic competition and the increasing expectations of customers and certification authorities. A long-term challenge for these organizations is to manage their knowledge and expertise heritage, which is jeopardized due to forthcoming retirement of the current generation of experts, engineers and technicians. Undertaking these challenges is particularly intricate when it comes to embedded mechatronic systems used in electro-mechanical actuation systems. The design of these complex systems involves heterogeneous knowledge due to the interface of multiple engineering specializations and the interacting physical laws that govern their behaviour. Additionally, embedded mechatronic systems are composed of several interdependent components and sub-systems. Dealing with interdependencies remains a non-trivial and fundamental aspect of modern engineering practice. This can result in costly iterations during the design process and final non-optimal solutions. Multidisciplinary System Design Optimization techniques provide theoretical foundations and computational tools for optimizing large and multidisciplinary systems. Tasks must be performed to apply such techniques for rapid initial sizing of mechatronic products: modelling the design knowledge, partitioning and coordinating the models for system performances analysis and optimization. Algebraic analysis functions are chosen to represent the design models. A new Multidisciplinary System Design Optimization formulation for fast and robust analysis is proposed. A theoretic graph approach using symbolic manipulation to assist designers in formulating large and multidisciplinary problems is outlined. A specific design methodology and its associated framework developed are presented. The general objective is to allow holistic sizing of mechatronic engineering systems with emphasis placed on model reusability and rapid decision making. The methodology is illustrated using a simple aerospace actuation system example. More complex actuation systems are then addressed. First, the design of an electro-mechanical primary flight control actuation system is examined, subsequently; the design methodology is applied to an electrical thrust reverser actuation system.
2

Riskanalys inom MRO-industrin / Risk Analysis in the MRO industry

Brstina, Stefan, Rizkallah, Leon January 2022 (has links)
MRO-industrin är en kritisk del för underhåll inom flygindustrin och arbetsprocesserna ser olika ut från företag till företag. För att kunna utföra ett så säkert och kvalitetsmässigt arbete som möjligt så är det viktigt att riskbedöma samt minimera existerande risker i operationen för att säkerställa kvalitet till kund samt säkerhet för arbetare. Uppdragsgivaren ST Engineering Aerospace Solutions (STEAS) är det ledande företaget i Sverige när det gäller MRO arbete och med den ständiga utvecklingen av utrustning upptäcks det allt fler risker som kräver analyser och minimering. Forskning har tidigare gjorts på hur fixtur design kan förbättras ergonomiskt m h a virtuell miljöteknik. Detta för att kunna minimera design och tillverkningskostnader med hänsyn till itereringsprocessen. Detta i kombination med studier gjorda på muskuloskeletala skador med kopplingar till MRO-industrin belyser behovet av riskanalys i MRO industrin. Arbetet hos STEAS går ut på att utföra riskanalyser ur ett tekniskt, ergonomiskt och ekonomiskt perspektiv på deras rörliga fixturer samt kemiska processer som behandlar diverse komponenter av motornacellet. Detta för att STEAS sedan ska kunna kolla på eventuella kostnader och implementera de rekommenderade åtgärderna. Analysmetoderna som används är en PHL (Preliminary Hazard List), FMEA (Failure Modes and Effects Analysis) och en ACHB analys (Accidental Cost & Hypothetical Benefit) / The MRO industry is a critical part of maintenance in the aviation industry where the work processes differ from company to company. In order to be able to perform as safe and high-quality work as possible, it is important to assess risks and minimize existing risks in the operation to ensure quality for customers and safety for workers. The client ST Engineering Aerospace Solutions (STEAS) is the leading company in Sweden interms of MRO work and with the constant development of equipment, more and more risks are discovered that require analysis and minimization. Research has previously been done on how fixture design can be improved ergonomically using virtual environment technology. This is to be able to minimize design and manufacturing costs with regard to the iteration process. This in combination with studies done on musculoskeletal injuries with connections to the MRO industry highlights the need for risk analysis in the MRO industry. The work at STEAS consists of performing risk analysis from a technical, ergonomic and financial perspective on their moving fixtures and chemical processes so that STEAS can then check for possible costs and implement the recommended measures. The analysis methods used are a PHL (Preliminary Hazard List), FMEA (Failure Modes and Effects Analysis) and an ACHB analysis (Accidental Cost & Hypothetical Benefit)

Page generated in 0.0652 seconds