Return to search

Short-circuit currents in wind-turbine generator networks

Protection of both the wind plant and the interconnecting transmission system during short-circuit faults is imperative for maintaining system structural integrity and reliability. The circuit breakers and protective relays used to protect the power system during such events are designed based upon calculations of the current that will flow in the circuit during the fault. Sequence-network models of various power-system components, such as synchronous generators, transformers, transmission lines, etc., are often used to perform these calculations. However, there are no such models widely accepted for certain types of wind-turbine generators used in modern wind plants.

The problem with developing sequence-network models of wind plants is that several different wind-turbine generator designs exist; yet, each exhibit very different short-circuit behavior. Therefore, a “one size fits all” approach is not appropriate for modeling wind plants, as has been the case for conventional power plants based on synchronous-generator technology. Further, many of the newer wind-turbine designs contain proprietary controls that affect the short-circuit behavior, and wind-turbine manufacturers are often not willing to disclose these controls. Thus, protection engineers do not have a standard or other well-established model for calculating short-circuit currents in power systems with wind plants. Therefore, the research described in this dissertation involves the development of such models for calculating short-circuit currents from wind-turbine generators.

The focus of this dissertation is on the four existing wind-turbine generator designs (identified as Types 1 – 4). Only AC-transmission-interconnected wind-turbine generators are considered in this dissertation. The primary objective of this research is the development of sequence-network models, which are frequency-domain analysis tools, for each wind-turbine generator design. The time-domain behavior of each wind-turbine generator is thoroughly analyzed through transient simulations, experimental tests on scaled wind-turbine generator test beds, and solutions to the system dynamic equations. These time-domain analyses are used to support the development of the sequence-network models.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/50361
Date13 January 2014
CreatorsHoward, Dustin F.
ContributorsHarley, Ronald G.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0019 seconds