Return to search

Development of a Multi-Port Memory Generator and Its Application in the Design of Register Files

Memory unit is one of the fundamental hardware components in system-on-chip (SoC) design, and takes a significant portion of total area cost. Although commercial memory compilers exist, they usually contains memory unit with single-port or dual ports. However, many SoC designs require memory units that support simultaneous multiple reads and writes. They cannot be efficiently generated using the existing memory compilers in the standard cell library. In this thesis, we develop a memory generator that can automatically produce the circuits of multi-port SRAM and all the necessary models required in the standard cell-based design flow. Compared to the design based on dual-port SRAM from memory compilers which usually consists of duplicated copies of SRAM units for supporting multiple write at the same, the proposed design has smaller area cost. Furthermore, we employ various low-power design concepts, including power-gating and adaptive body-bias, to reduce the dynamic and static power of the generated SRAM circuits. Experimental results show that the proposed multi-port SRAM generator can be used to synthesize low-power and low-area register file circuits that support multiple reads and writes at the same time.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0906111-100927
Date06 September 2011
CreatorsWang, Chen-Yu
ContributorsYun-Nan Chang, Shen-Fu Hsiao, Chen Chung-Ho, Shiann-Rong Kuang, Ming-Chih Chen
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0906111-100927
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0019 seconds