L'aluminium est l'un des métaux non ferreux les plus utilisés dans le monde avec une large gamme d'applications de la batterie de cuisine simple au vaisseau spatial avancé. Au fait, avec des applications où des propriétés mécaniques élevées sont nécessaires, comme dans l'industrie automobile, une considération technique est requise pour améliorer les propriétés mécaniques. Comme la distribution finale des précipités joue un rôle crucial dans les propriétés mécaniques de ces alliages, une meilleure compréhension de l'évolution de la microstructure et cinétique des précipitations peut aider sensiblement la conception du procédé de traitement thermique des alliages d'aluminium. Cependant, en raison de la taille et de la morphologie des précipités, les études expérimentales de la précipitation et les méthodes de caractérisation avancée requises comme la microscopie électronique à transmission sont coûteuses et nécessitent beaucoup d’expertises techniques. Les méthodes numériques, lorsqu’elles sont à point, peuvent s’avérer comme étant un outil très utile pour évaluer l'évolution des précipités et les propriétés mécaniques correspondantes. Cette étude présente un modèle cinétique de précipitation. Contrairement à de nombreuses études qui portent principalement sur la diffusion et l’énergie de d’interface, nous considérons la mobilité interfaciale comme étant la variable ayant un réel impact dans la cinétique de croissance des différents types de précipités. Cette variable, non seulement offre la possibilité d’étudier l’évolution des précipités des alliages multi éléments, mais permet aussi d’améliorer les performances de calcul. En outre, l'autre aspect positif de ce modèle est la possibilité de travailler avec des alliages industriels complexes multiphasés en considérant la croissance et la dissolution de différents types de précipités simultanément. / Aluminum is one of the most used non-ferrous metal in the world with an enormous range of applications from simple kitchenware to advanced spacecraft. In applications where high mechanical properties are needed, like in the car industry, it is strongly required to improve the mechanical properties. As the final distribution of precipitates plays a crucial role in mechanical properties of these alloys, a better understanding of the microstructural evolution and kinetics of precipitation can help noticeably the design of the heat treatment process of aluminum alloys. However, due to the size and morphology of the precipitates, experimental studies of the precipitation required advanced characterization methods like transmission electron microscopy which is not an industrially favorable technique since it is costly and required a lot of technical expertise. Numerical investigation can be a desirable tool to model the evolution of the precipitates and the corresponding mechanical properties. This study presents a kinetic model of precipitation. Unlike many studies that mainly focus on the diffusion and surface energy, we consider interfacial mobility as an effective variable in a mixed-mode model. This variable not only provides us the possibility to study the precipitates’ evolution in multicomponent alloys but also can boost the calculation performance. Moreover, the other superiority of this model is the possibility of working with complex multiphase industrial Al alloys by considering the growth and the dissolution of different types of precipitates simultaneously.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/66865 |
Date | 27 January 2024 |
Creators | Naseri, Tohid |
Contributors | Larouche, Daniel |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xvii, 140 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0022 seconds