Titre de l'écran-titre (visionné le 26 février 2024) / Dans l'ère numérique actuelle, l'apprentissage automatique, une branche de l'intelligence artificielle, est en train de révolutionner de nombreux secteurs, y compris celui de l'assurance. L'importance d'une évaluation précise des risques est cruciale dans le secteur des assurances, où la détermination de l'admissibilité d'un client à un type d'assurance spécifique est au cœur du processus de souscription. Traditionnellement, cette évaluation s'appuie sur des informations fournies par les clients, telles que leur état de santé, leur consommation de tabac ou d'alcool, et peut même inclure des examens médicaux, comme des tests d'urine pour détecter la présence de substances spécifiques. Cependant, l'intégrité des réponses fournies pose souvent problème. Par exemple, certains clients peuvent sous-déclarer leur consommation de tabac, influençant ainsi les décisions de souscription et les tarifications. Dans ce contexte, les compagnies d'assurance sont souvent contraintes de réaliser des tests médicaux coûteux pour valider les déclarations des clients. Toutefois, grâce à l'apprentissage automatique, nous pouvons potentiellement réduire ces coûts. En développant des modèles prédictifs pour détecter les fumeurs basés sur d'autres informations fournies, il est possible de réduire considérablement sur les coûts. Avec l'apprentissage automatique, nous pouvons analyser de grandes quantités de données, identifier des modèles et faire des prédictions avec une précision élevée. Cette approche ouvre la voie à des processus d'assurance plus optimisés et axés sur les données. En utilisant l'apprentissage automatique, en particulier les algorithmes de classification, nous exploitons des données d'assurance-vie pour prédire si les individus falsifient leurs réponses concernant leur statut de fumeur. Nous mettons en œuvre de nouvelles approches pour traiter les valeurs manquantes, en prenant en compte les aspects humains des données. De plus, nous introduisons une modification de l'algorithme de classification *Set Covering Machine* pour répondre aux défis associés aux coûts des erreurs lors des demandes d'assurance-vie. / In today's digital age, machine learning, a branch of artificial intelligence, is revolutionizing numerous sectors, including insurance. Accurate risk assessment is crucial in the insurance industry, where determining a client's eligibility for a specific type of insurance is central to the underwriting process. Traditionally, this assessment relies on information provided by clients, such as their health status, tobacco or alcohol consumption, and can even include medical examinations, like urine tests to detect specific substances. However, the integrity of the responses provided often poses challenges. For instance, some clients might under-report their tobacco consumption, subsequently influencing underwriting decisions and pricing. In this context, insurance companies often find themselves compelled to conduct costly medical tests to validate client statements. Nevertheless, with the aid of machine learning, we can potentially reduce these costs. By developing predictive models to identify smokers based on other provided information, there's potential for significant savings on testing costs. Thanks to machine learning, we can analyze vast amounts of data, identify patterns, and make predictions with more precision. This approach not only improves the reliability of eligibility assessments but also paves the way for more optimized, data-driven insurance processes. Using machine learning, particularly classification algorithms, we utilized life insurance data to predict whether individuals falsify their responses regarding their smoking status. We implemented new approaches to handle missing values, taking into account the human aspects of the data. Furthermore, we introduced a modification to the *Set Covering Machine* classification algorithm to address the challenges associated with the costs of errors in life insurance applications.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/136445 |
Date | 01 March 2024 |
Creators | Sadeghpour Gildeh, Saeideh |
Contributors | Khoury, Richard |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (xv, 229 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0026 seconds