Tesis por compendio / [ES] El parto prematuro, definido como el nacimiento antes de las 37 semanas de gestación, es una importante preocupación mundial con implicaciones para la salud de los recién nacidos y los costes económicos. Afecta aproximadamente al 11% de todos los nacimientos, lo que supone más de 15 millones de individuos en todo el mundo. Los métodos actuales para predecir el parto prematuro carecen de precisión, lo que conduce a un sobrediagnóstico y a una viabilidad limitada en entornos clínicos. La electrohisterografía (EHG) ha surgido como una alternativa prometedora al proporcionar información relevante sobre la electrofisiología uterina. Sin embargo, los sistemas de predicción anteriores basados en EHG no se han trasladado de forma efectiva a la práctica clínica, debido principalmente a los sesgos en el manejo de datos desbalanceados y a la necesidad de modelos de predicción robustos y generalizables.
Esta tesis doctoral pretende desarrollar un sistema de predicción del parto prematuro basado en inteligencia artificial utilizando EHG y datos obstétricos de mujeres sometidas a controles prenatales regulares. Este sistema implica la extracción de características relevantes, la optimización del subespacio de características y la evaluación de estrategias para abordar el reto de los datos desbalanceados para una predicción robusta.
El estudio valida la eficacia de las características temporales, espectrales y no lineales para distinguir entre casos de parto prematuro y a término. Las nuevas medidas de entropía, en concreto la dispersión y la entropía de burbuja, superan a las métricas de entropía tradicionales en la identificación del parto prematuro. Además, el estudio trata de maximizar la información complementaria al tiempo que minimiza la redundancia y las características de ruido para optimizar el subespacio de características para una predicción precisa del parto prematuro mediante un algoritmo genético.
Además, se ha confirmado la fuga de información entre el conjunto de datos de entrenamiento y el de prueba al generar muestras sintéticas antes de la partición de datos, lo que da lugar a una capacidad de generalización sobreestimada del sistema predictor. Estos resultados subrayan la importancia de particionar y después remuestrear para garantizar la independencia de los datos entre las muestras de entrenamiento y de prueba. Se propone combinar el algoritmo genético y el remuestreo en la misma iteración para hacer frente al desequilibrio en el aprendizaje de los datos mediante el enfoque de particio'n-remuestreo, logrando un área bajo la curva ROC del 94% y una precisión media del 84%. Además, el modelo demuestra un F1-score y una sensibilidad de aproximadamente el 80%, superando a los estudios existentes que consideran el enfoque de remuestreo después de particionar. Esto revela el potencial de un sistema de predicción de parto prematuro basado en EHG, permitiendo estrategias orientadas al paciente para mejorar la prevención del parto prematuro, el bienestar materno-fetal y la gestión óptima de los recursos hospitalarios.
En general, esta tesis doctoral proporciona a los clínicos herramientas valiosas para la toma de decisiones en escenarios de riesgo materno-fetal de parto prematuro. Permite a los clínicos diseñar estrategias orientadas al paciente para mejorar la prevención y el manejo del parto prematuro. La metodología propuesta es prometedora para el desarrollo de un sistema integrado de predicción del parto prematuro que pueda mejorar la planificación del embarazo, optimizar la asignación de recursos y reducir el riesgo de parto prematuro. / [CA] El part prematur, definit com el naixement abans de les 37 setmanes de gestacio', e's una important preocupacio' mundial amb implicacions per a la salut dels nounats i els costos econo¿mics. Afecta aproximadament a l'11% de tots els naixements, la qual cosa suposa me's de 15 milions d'individus a tot el mo'n. Els me¿todes actuals per a predir el part prematur manquen de precisio', la qual cosa condueix a un sobrediagno¿stic i a una viabilitat limitada en entorns cl¿'nics. La electrohisterografia (EHG) ha sorgit com una alternativa prometedora en proporcionar informacio' rellevant sobre l'electrofisiologia uterina. No obstant aixo¿, els sistemes de prediccio' anteriors basats en EHG no s'han traslladat de manera efectiva a la pra¿ctica cl¿'nica, degut principalment als biaixos en el maneig de dades desequilibrades i a la necessitat de models de prediccio' robustos i generalitzables.
Aquesta tesi doctoral prete'n desenvolupar un sistema de prediccio' del part prematur basat en intel·lige¿ncia artificial utilitzant EHG i dades obste¿triques de dones sotmeses a controls prenatals regulars. Aquest sistema implica l'extraccio' de caracter¿'stiques rellevants, l'optimitzacio' del subespai de caracter¿'stiques i l'avaluacio' d'estrate¿gies per a abordar el repte de les dades desequilibrades per a una prediccio' robusta.
L'estudi valguda l'efica¿cia de les caracter¿'stiques temporals, espectrals i no lineals per a distingir entre casos de part prematur i a terme. Les noves mesures d'entropia, en concret la dispersio' i l'entropia de bambolla, superen a les me¿triques d'entropia tradicionals en la identificacio' del part prematur. A me's, l'estudi tracta de maximitzar la informacio' complementa¿ria al mateix temps que minimitza la redunda¿ncia i les caracter¿'stiques de soroll per a optimitzar el subespai de caracter¿'stiques per a una prediccio' precisa del part prematur mitjan¿cant un algorisme gene¿tic.
A me's, hem confirmat la fugida d'informacio' entre el conjunt de dades d'entrenament i el de prova en generar mostres sinte¿tiques abans de la particio' de dades, la qual cosa dona lloc a una capacitat de generalitzacio' sobreestimada del sistema predictor. Aquests resultats subratllen la importa¿ncia de particionar i despre's remostrejar per a garantir la independe¿ncia de les dades entre les mostres d'entrenament i de prova. Proposem combinar l'algorisme gene¿tic i el remostreig en la mateixa iteracio' per a fer front al desequilibri en l'aprenentatge de les dades mitjan¿cant l'enfocament de particio'-remostrege, aconseguint una a¿rea sota la corba ROC del 94% i una precisio' mitjana del 84%. A me's, el model demostra una puntuacio' F1 i una sensibilitat d'aproximadament el 80%, superant als estudis existents que consideren l'enfocament de remostreig despre's de particionar. Aixo¿ revela el potencial d'un sistema de prediccio' de part prematur basat en EHG, permetent estrate¿gies orientades al pacient per a millorar la prevencio' del part prematur, el benestar matern-fetal i la gestio' o¿ptima dels recursos hospitalaris.
En general, aquesta tesi doctoral proporciona als cl¿'nics eines valuoses per a la presa de decisions en escenaris de risc matern-fetal de part prematur. Permet als cl¿'nics dissenyar estrate¿gies orientades al pacient per a millorar la prevencio' i el maneig del part prematur. La metodologia proposada e's prometedora per al desenvolupament d'un sistema integrat de prediccio' del part prematur que puga millorar la planificacio' de l'embara¿s, optimitzar l'assignacio' de recursos i millorar la qualitat de l'atencio'. / [EN] Preterm delivery, defined as birth before 37 weeks of gestation, is a significant global concern with implications for the health of newborns and economic costs. It affects approximately 11% of all births, amounting to more than 15 million individuals worldwide. Current methods for predicting preterm labor lack precision, leading to overdiagnosis and limited practicality in clinical settings. Electrohysterography (EHG) has emerged as a promising alternative by providing relevant information about uterine electrophysiology. However, previous prediction systems based on EHG have not effectively translated into clinical practice, primarily due to biases in handling imbalanced data and the need for robust and generalizable prediction models.
This doctoral thesis aims to develop an artificial intelligence based preterm labor prediction system using EHG and obstetric data from women undergoing regular prenatal check-ups. This system entails extracting relevant features, optimizing the feature subspace, and evaluating strategies to address the imbalanced data challenge for robust prediction.
The study validates the effectiveness of temporal, spectral, and non-linear features in distinguishing between preterm and term labor cases. Novel entropy measures, namely dispersion and bubble entropy, outperform traditional entropy metrics in identifying preterm labor. Additionally, the study seeks to maximize complementary information while minimizing redundancy and noise features to optimize the feature subspace for accurate preterm delivery prediction by a genetic algorithm.
Furthermore, we have confirmed leakage information between train and test data set when generating synthetic samples before data partitioning giving rise to an overestimated generalization capability of the predictor system. These results emphasize the importance of using partitioning-resampling techniques for ensuring data independence between train and test samples. We propose to combine genetic algorithm and resampling method at the same iteration to deal with imbalanced data learning using partition-resampling pipeline, achieving an Area Under the ROC Curve of 94% and Average Precision of 84%. Moreover, the model demonstrates an F1-score and recall of approximately 80%, outperforming existing studies on partition-resampling pipeline.
This finding reveals the potential of an EHG-based preterm birth prediction system, enabling patient-oriented strategies for enhanced preterm labor prevention, maternal-fetal well-being, and optimal hospital resource management.
Overall, this doctoral thesis provides clinicians with valuable tools for decision-making in preterm labor maternal-fetal risk scenarios. It enables clinicians to design a patient-oriented strategies for enhanced preterm birth prevention and management. The proposed methodology holds promise for the development of an integrated preterm birth prediction system that can enhance pregnancy planning, optimize resource allocation, and ultimately improve the outcomes for both mother and baby. / Nieto Del Amor, F. (2023). Design and assessment of a computer-assisted artificial intelligence system for predicting preterm labor in women attending regular check-ups. Emphasis in imbalance data learning technique [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/200900 / Compendio
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/200900 |
Date | 18 December 2023 |
Creators | Nieto del Amor, Félix |
Contributors | Prats Boluda, Gema, Ye Lin, Yiyao, Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds