Return to search

Analyse de la dynamique neuronale pour les Interfaces Cerveau-Machines : un retour aux sources.

Les Interfaces Cerveau-Machine sont des dispositifs permettant d'instaurer un canal de communication entre le cerveau humain et le monde extérieur sans utiliser les voies usuelles nerveuses et musculaires. Le développement de tels systèmes se situe à l'interface entre le traitement du signal, l'apprentissage statistique et la neurophysiologie. Dans cette thèse, nous avons réalisé et étudié un dispositif d'Interface Cerveau-Machine non invasif asynchrone, c'est-à-dire capable d'identifier des actions mentales associées à des tâches motrices ou cognitives imaginées sans synchronisation sur un événement contrôlé par un système externe. Celui-ci est basé sur l'analyse en temps réel de signaux électro-encéphalographiques (EEG) issus d'électrodes disposées à la surface de la tête d'un sujet humain. Du point de vue méthodologique, nous avons implémenté plusieurs techniques de prétraitement de ces signaux et comparé leur influence sur les performances du système. Ces techniques comprennent : 1) l'utilisation directe du signal issu des capteurs EEG, 2) l'exploitation de méthodes de séparation de sources qui permettent de résumer les signaux EEG par un faible nombre de composantes spatiales et 3) la reconstruction de l'activité des sources de courant corticales par résolution du problème inverse en EEG. De plus, plusieurs mesures permettant de quantifier l'activité cérébrale sont exploitées et comparées : la puissance spectrale, la cohérence et la synchronie de phase. Nos résultats montrent que la reconstruction préalable de l'activité corticale par problème inverse, ainsi que l'utilisation de mesures d'interaction à distance permettent d'améliorer les performances du dispositif.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00559128
Date22 November 2007
CreatorsBesserve, Michel
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0025 seconds