Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-05-26T17:51:05Z
No. of bitstreams: 1
sandramachadodesouzalima.pdf: 680308 bytes, checksum: 1b724b63bb7a52093f6e1411a716269f (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-05-29T18:54:12Z (GMT) No. of bitstreams: 1
sandramachadodesouzalima.pdf: 680308 bytes, checksum: 1b724b63bb7a52093f6e1411a716269f (MD5) / Made available in DSpace on 2017-05-29T18:54:12Z (GMT). No. of bitstreams: 1
sandramachadodesouzalima.pdf: 680308 bytes, checksum: 1b724b63bb7a52093f6e1411a716269f (MD5)
Previous issue date: 2014-07-03 / FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais / A variedade de Nehari para a equação −∆u(x) = λa(x)u(x)q + b(x)u(x)p, com x ∈ Ω, junto com a condição de fronteira de Dirichlet é investigada no caso em que a(x) = 1, λ ∈R, q = 1 e 0 < p < 1, e também no caso em que λ > 0 e 0 < q < 1 < p < 2∗−1. Explorando a relação entre a variedade de Nehari e a aplicação fibração ( isto é, aplicações da forma t → J(tu) onde J é o funcional de Euler associado ao problema em questão), iremos discutir a existência e multiplicidade de soluções não negativas. / The Nehari Manifold for the equation −∆u(x) = λa(x)u(x)q + b(x)u(x)p, for x ∈ Ω together with Dirichlet boundary conditions is investigated in which case a(x) = 1, λ ∈R, q = 1 and 0 < p < 1, and also in the case that λ > 0 and 0 < q < 1 < p < 2∗−1. Exploring the relationship between the Nehari manifold and fibering maps (i.e., maps of the form t → J(tu) where J is the Euler functional associated to the above equation), we will discuss the existence and multiplicity of non negative solutions.
Identifer | oai:union.ndltd.org:IBICT/oai:hermes.cpd.ufjf.br:ufjf/4700 |
Date | 03 July 2014 |
Creators | Lima, Sandra Machado de Souza |
Contributors | Miyagaki, Olímpio Hiroshi, Santos, Carlos Alberto Pereira dos, Pereira, Fábio Rodrigues |
Publisher | Universidade Federal de Juiz de Fora (UFJF), Mestrado Acadêmico em Matemática, UFJF, Brasil, ICE – Instituto de Ciências Exatas |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFJF, instname:Universidade Federal de Juiz de Fora, instacron:UFJF |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds