Return to search

Procédés de séparation multi colonnes continus : extension à la chromatographie à gradient de solvant / Continuous multicolumn separation processes : extension to solvent gradient chromatography

Les procédés multi-colonnes de chromatographie ont connu depuis quelques années un développement tel qu'ils sont devenus des standards industriels à toutes échelles, depuis celle des produits pharmaceutiques à haute valeur ajoutée jusqu'à celle des grands intermédiaires chimiques. La spécificité du présent travail consiste à étudier, pour ces procédés, l'influence d'un gradient d'élution. Il s'agit de faire varier au cours du temps la force éluante de la phase mobile. L'objectif est d'augmenter la productivité et le taux de récupération d'un produit à haute valeur ajoutée, tout en répondant à des contraintes de pureté. L'utilisation d'un gradient de solvant, courante en chromatographie analytique, fait l'objet d'un intérêt plus récent en chromatographie préparative. Les applications visées concernent des séparations de mélanges complexes où l'espèce cible a une affinité intermédiaire pour le support solide par rapport à celle des autres espèces, ce qui est souvent le cas lors de la purification de biomolécules issues de matières premières naturelles ou issues des biotechnologies. Dans ce cas, la séparation conduit à trois fractions, des impuretés faiblement retenues, la fraction intermédiaire et des impuretés fortement retenues. Pour notre étude, un mélange modèle, peu coûteux et non toxique, de cinq acides aminés a été choisi. Ces acides aminés ont été choisis en tenant compte de leur caractère apolaire et hydrophobe. Les séparations ont été réalisées par chromatographie en phase inverse. Dans un premier temps, une étude expérimentale, réalisée à l'aide d'une chaîne HPLC, a permis de déterminer les paramètres des isothermes d'adsorption de chaque acide aminé pour différentes teneurs en solvant organique de l'éluant. Une loi empirique a permis de relier le facteur de rétention k à la composition de la phase mobile (K = f (xméthanol)). Un travail de modélisation/simulation, reposant sur l'approche d'une cascade de mélangeurs, a ensuite permis de simuler les séparations obtenues dans le cas d'une seule colonne, puis dans le cas d'un système multi-colonnes. L'utilisation des lois reliant les facteurs de rétention k à la concentration en modifieur a alors permis de réaliser des simulations pour différents gradients de solvants. Dans le cas d'une seule colonne, le gradient a été optimisé en minimisant la durée de la séparation et en respectant une contrainte sur la résolution des pics des 2 espèces les plus difficiles à séparer. Une bonne adéquation a été observée entre les simulations et les résultats expérimentaux obtenus avec un gradient sur une seule colonne. Des expérimentations numériques ont alors été réalisées dans le cas du système multi-colonnes. Les paramètres opératoires optimaux ont été déterminés dans le cas du mélange étudié. Ces réglages seront ainsi utilisés lors de la validation expérimentale qui sera réalisée sur l'unité pilote. Cette unité comporte trois colonnes. Il s'agit d'un procédé séquentiel cyclique. Pour le mode opératoire retenu, chaque cycle comporte 8 étapes. A chaque étape les alimentations et soutirages des différentes colonnes sont modifiées. Pour le soutirage qui correspond à la fraction de l'espèce cible, les critères étudiés seront la pureté et le taux de récupération / Multi-column chromatographic processes have known, for a few years, a development on all scales, from high added value pharmaceutical products to major chemical intermediates. The specificity of the present work is to study the influence of a gradient elution for these processes. It consists in varying the eluent strength of the mobile phase over the time. The aim is to increase the productivity and the recovery ratio of a high added value product, while satisfying the constraints of purity. Solvent gradient is currently used in analytical chromatography and presents a recent interest in preparative chromatography. The applications concern separations of complex mixtures where the target species has an intermediate affinity for the solid phase compared to other species, which is often the case during the purification of biomolecules extracted from natural raw materials or resulting from biotechnologies. In this case, separation leads to three fractions, impurities weakly retained, an intermediate fraction and impurities strongly retained. For our study, a model mixture, inexpensive and nontoxic, of five amino acids was selected considering their nonpolar and hydrophobic character. The separations were carried out by reversed phase chromatography. An experimental study using a HPLC system was first carried out with single-element solution of each amino acid in isocratic mode. This enabled to determine adsorption isotherm parameters. An empirical law giving the retention factor as a function of eluent composition was determined (K = f (xmethanol)). A work of modeling / simulation, assuming linear isotherm and based on the mixed cells approach, permitted to simulate the separations obtained in the case of a one-column process, then in the case of a multi-column system. The use of retention factors laws allowed to carry out simulations for different solvent gradients. In the case of a single column, a simple methodology was developed to calculate the optimal solvent gradient. The gradient was optimized by minimizing the separation time and by respecting a constraint on the peaks resolution of the two species which are the most difficult to separate. A really good adequacy was observed between simulations and the experimental results. Numerical experimentations, executed in the case of the multi-columns process, made it possible, yet, to find the optimal operating parameters in the case of the studied mixture. These settings will be applied in the experimental validation which will be realized on the pilot unit. This unit has three columns. It is a cyclic sequential process. For the selected operating mode, each cycle contains eight steps. At each step, inlets ant outlets streams of different columns are switched. The criteria for the target species fraction are purity and recovery

Identiferoai:union.ndltd.org:theses.fr/2013LORR0190
Date11 December 2013
CreatorsTlili, Nawal
ContributorsUniversité de Lorraine, Muhr, Laurence, Bailly, Michel
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.003 seconds