Les Processus Markoviens D eterministes par Morceaux (PDMP) ont et e introduits dans la litt erature par M.H.A Davis comme une classe g en erale de mod eles stochastiques. Les PDMP forment une famille de processus markoviens qui d ecrivent une trajectoire d eterministe ponctu ee par des sauts al eatoires. Dans une premi ere partie, les PDMP sont utilis es pour calculer des probabilit es d' ev enements redout es pour un cas-test de la abilit e dynamique (le r eservoir chau e) par deux m ethodes num eriques di erentes : la premi ere est bas ee sur la r esolution du syst eme di erentiel d ecrivant l' evolution physique du r eservoir et la seconde utilise le calcul de l'esp erance de la fonctionnelle d'un PDMP par un syst eme d' equations int egro-di erentielles. Dans la seconde partie, nous proposons une m ethode num erique pour approcher la fonction valeur du probl eme d'arr^et optimal pour un PDMP. Notre approche est bas ee sur la quanti cation de la position apr es saut et le temps inter-sauts de la chaî ne de Markov sous-jacente au PDMP, et la discr etisation en temps adapt ee a la trajectoire du processus. Ceci nous permet d'obtenir une vitesse de convergence de notre sch ema num erique et de calculer un temps d'arrêt epsilon-optimal.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00938591 |
Date | 03 December 2010 |
Creators | Gonzalez, Karen |
Publisher | Université Sciences et Technologies - Bordeaux I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds