L’objet de cette thèse est d’étudier la probabilité de survie d’un processus de branchement en environnement aléatoire markovien et d’étendre dans ce cadre les résultats connus en milieu aléatoire i.i.d.. le cœur de l’étude repose sur l’utilisation des théorèmes limites locaux pour une marche aléatoire centrée (Sn)n≥0 sur R à pas markoviens et pour (rnn)n≥0, où mn = min (0, S1,... , Sn). Pour traiter le cas d’un environnement aléatoire markovien, nous développons dans un premier temps une étude des théorèmes locaux pour une chaîne semi-markovienne à valeurs réelles en améliorant certains résultats déjà connus et développés initialement par E. L. Presman (voir aussi [21]). Nous utilisons ensuite ces résultats pour l’étude du comportement asymptotique de la probabilité de survie d’un processus de branchement critique en environnement aléatoire markovien. Les résultats principaux de cette thèse (théorème limite local et son application au processus de branchement critique eu milieu aléatoire) ont été acceptés et publiés dans le Comptes Rendus de l‘Académie des Sciences ([20]). Le texte principal de cette mémoire de thèse consisite les détails des preuves. / The purpose of this thesis is to study the survival probability of a branching process in markovian random environment and expand in this framework some known results which have been developed for a branching processus in i.i.d. random environment, the core of the study is based on the use of the local limit theorem for a centered random walk (Sn)n≥o on R with markovian increasements and for (mn)n≥0. where mn = min (O. S1,……. , Sn). In order to treat the case of a markovian random environment, we establish firstly a local limit theorem for a semi-markovian chain on R. which improves certain results developed initially by E. P. Presman (see also [21]). And then we use these results to study the asymptotic behavior of a critical branching process in markovian environment. The main results et this thesis (local limit theorem and its application to the critical branching process in random environment) are accepted and published in Comptes Rendus de l’Académie des Sciences ([20]). The principal text et this thesis contains the details of the proofs.
Identifer | oai:union.ndltd.org:theses.fr/2011TOUR4007 |
Date | 08 June 2011 |
Creators | YE, Yinna |
Contributors | Tours, Peigné, Marc |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds