Return to search

Production, in vitro modification, and interaction analysis of a hydroxyproline-dependent protein

The development of a biologic protein involves different stages and becomes a highly complex process which can be costly and time consuming to scale up for industrial production. Therefore, optimization is a necessary part of the production process development to lower the production expenses.An on-going project is working on upscaling the production of a protein derived from mussel adhesive proteins (MAPs) which has great properties to be used as a pharmaceutical drug or in medical devices. The protein is expressed in a bacterial host cell and the necessary post translational modifications (PTMs) are done in-vitro using enzymes. The work presented in this report was done to optimize both the protein production in lab scale bioreactors and the enzymatic reaction using an immobilized prolyl-4-hydroxylase (P4H) which does a post translational modification on prolyl-residues. Additionally, an interaction study was conducted to better understand the hydroxylation using the prolyl-4-hydroxylase.For the bioreactor optimization four initial trials were performed testing different growth and induction temperatures and also comparing exponential to linear feeding. From these trials it appeared that having 30 ℃ growth overnight and induction at the same temperature in combination with an exponential feeding rate gave the best results. The modifications done by the prolyl-4-hydroxylase were analysed by LC-MS and suggest that longer incubation time and more immobilized protein gives more modifications in the tested ranges and the possibilities of reusing the immobilized proteins looks promising. No conclusive data was discovered for the optimal substrate concentration. The interaction study revealed the importance of reagents used for catalysis with the enzyme to be present for interaction to occur, however more work needs to be done to discover an accurate KD for the interaction.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-507173
Date January 2023
CreatorsPlavsic, Milica
PublisherUppsala universitet, Biokemi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC X ; 23010

Page generated in 0.0019 seconds