• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 9
  • 9
  • 7
  • 7
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tissue expression and functional insights into HIF prolyl hydroxylase domain enzymes

Wijeyekoon, Jananath Bhathiya January 2013 (has links)
This research programme investigated the expression of prolyl hydroxylase (PHD) proteins in rodent tissues. The importance of PHD enzymes lies in their ability to render oxygen sensitivity to Hypoxia inducible factor (HIF), the principal mediator of intracellular oxygen homeostasis. The first part of this study focused on developing and validating anti-sera capable of detecting PHD proteins in rodent tissues. With these reagents, it was possible to assess the relative expression of each PHD protein in a number of different rat tissues. PHD2 was the most abundant isoform in all tissues studied. In contrast, an abundance of PHD1 was observed only in testis and skeletal muscle. A number of different tissue species of PHD3 were identified and their abundance was found to vary between different tissues. These observations provide further evidence of the principal role of PHD2 in regulating HIF in vivo, but also point towards additional roles for PHD1 and PHD3 in selected tissues. They highlight the potential for there being a complex interplay between different PHD enzymes which could, in the future, prove potential targets for therapeutic manipulation. This study also provides additional insights into the mechanisms underlying the phenotypes observed in PHD deletional mouse models which appear, in many cases, to be directly related to the abundance of a given PHD isoform. The emerging role of PHD3 as a promoter of sympathetic lineage apoptosis prompted further study of PHD3 expression in rat neuronal tissues. An abundance of PHD3 was demonstrated throughout the rat sympathetic nervous system, a finding which appeared at odds with its known role as a promoter of neuronal apoptosis and resulted in a series of collaborative studies which demonstrated a sympatho-adrenal phenotype in wild type compared to PHD3-/- mice. Further collaborative studies utilising wild type mice and those deleted of specific PHD isoforms, were carried out to assess the significance of the abundance of PHD3 and PHD1 noted here in rat hippocampus and testis respectively. While neither study demonstrated statistically significant phenotypes, these observations remain of interest and areas for future research.
2

Pre-Wounding and Connective Tissue Grafts: A Pilot Investigation

Anderson, Eric Paul 28 July 2011 (has links)
No description available.
3

Studies on the anemia-improving effect of prolyl hydroxylase inhibitors / Prolyl hydroxylase阻害剤による貧血改善作用に関する研究

Kato, Sota 23 March 2022 (has links)
京都大学 / 新制・論文博士 / 博士(農学) / 乙第13488号 / 論農博第2900号 / 新制||農||1093(附属図書館) / 学位論文||R4||N5367(農学部図書室) / (主査)教授 井上 和生, 教授 谷 史人, 教授 保川 清 / 学位規則第4条第2項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
4

Expressão e purificação heteróloga do fator de transcrição induzido por hipóxia HIF-1 humano visando estudos estruturais e bioquímicos e estudos estruturais das prolil-hidroxilases (PHDs) humanas, isoformas 1 e 3, em complexo com inibidores / Heterologous expression and purification of the hypoxia-induced factor HIF-1 human aiming structural and biochemical studies and structural studies of prolyl-hydroxylases (PHDs) human, isoforms 1 and 3, in complex with inhibitors

Fala, Angela Maria, 1983- 23 August 2018 (has links)
Orientador: Andre Luís Berteli Ambrósio / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-23T16:57:05Z (GMT). No. of bitstreams: 1 Fala_AngelaMaria_M.pdf: 4666864 bytes, checksum: 3bcb145c1dc353b15b43b75e5723a310 (MD5) Previous issue date: 2013 / Resumo: A adaptação das células cancerosas ao microambiente é o ponto central que leva ao fenótipo invasivo e metastático, e é garantida principalmente através do controle preciso da expressão gênica. A resposta às necessidades energéticas e biossintéticas e principalmente à disponibilidade de oxigênio intracelular, por exemplo, é em grande parte mediada pelo fator de transcrição induzido por hipóxia 1 (HIF-1). HIF-1 é um heterodímero composto pelas subunidades ? e ?, que respondem a sequência consenso (5'-RCGTG-3') e ativam a transcrição de mais de 100 genes envolvidos em diversos aspectos cruciais da biologia tumoral, incluindo angiogênese, metabolismo de glicose, diferenciação celular, apoptose e resistência a radio e quimioterapias. São conhecidas três isoformas da subunidade ? (1 a 3) e todas se heterodimerizam com a subunidade ?. No geral, HIFs são constituídas de diferentes domínios funcionais, como de ligação ao DNA, de heterodimerização, transativação e degradação. Atualmente, pouco se sabe sobre os mecanismos estruturais e funcionais dos domínios da HIF- 1, deste modo este trabalho objetivou o estudo estrutural destes domínios. Os domínios bHLH, Pas-1 e Pac de HIF-1? e HIF-? em diferentes combinações entre si e o domínio Pac da HIF-3? foram clonados, as proteínas foram expressas em sistema bacteriano e purificadas por diferentes técnicas cromatográficas. Diversas destas construções se mostraram insolúveis ou suscetíveis a degradação, enquanto outras foram purificadas com sucesso. As construções Pac, um exemplo de sucesso na produção, foram submetidas a ensaios de anisotropia de fluorescência e ressonância magnética nuclear, o que nos permitiu a caracterização dos perfis de interação entre as várias combinações de heterodimerização. Neste contexto, os resultados mostram que o equilíbrio dinâmico da interação entre Pac-1? com a subunidade -1? é alcançado imediatamente, enquanto que para a interação entre Pac-3? e -1?, são necessários pelo menos 30 horas de incubação. O mesmo pode ser extraído da caracterização da interação direta entre Pac-1? e Pac-3?. Nos experimentos de RMN, foi possível identificar a região de interação entre as subunidades -1? e -3? com a subunidade ?, separadamente. Ambas as subunidades ? interagem com a Pac-1? na região das fitas-beta 1 e 5 e no loop entre as fitas 4 e 5. Em conjunto, estes resultados impactam no mecanismo de antagonização de HIF-3? na atividade transcricional de HIF-1?. Houve ainda a formação de monocristais da subunidade Pac-3?, que foram submetidos a experimentos preliminares de difração de raios X, que apesar de resultar em dados anisotrópicos e insuficientes para resolução estrutural, permitiram a caracterização dos parâmetros cristalinos, incluindo a presença de um alto conteúdo de solvente. Adicionalmente, são também apresentados os resultados obtidos visando a expressão e cristalização das Prolilhidroxilases (PHDs) isoformas 1 a 4, durante estágio de seis meses no Structural Genomics Consortium (SGC), da Universidade de Oxford, na Inglaterra. Foram expressas de maneira solúvel e purificadas, diversas construções das isoformas 1 e 3 das PHDs humanas. Cristais foram obtidos, porém estes foram determinados como sendo de compostos inorgânicos presentes na condição de cristalização. Como resultado final, está sendo estabelecida uma colaboração entre o nosso grupo e o SGC para que os estudos estruturais com PHDs se estendam e sejam realizados em nosso laboratório aqui no Brasil / Abstract: The adaptation process of cancer cells to the microenvironment is the central point leading to the invasive and metastatic phenotypes, and is guaranteed mainly through the precise control of gene expression. The cell response to the energetic and biosynthetic needs and especially to the availability of intracellular oxygen is mediated by the hypoxia inducible transcription factor 1, or HIF-1. HIF-1 functions as a heterodimer composed by subunits ? and ?, binding to responsive elements with the consensus sequence 5'-RCGTG-3 ', thus activating the transcription of more than 100 genes involved in many crucial aspects of tumor biology, including angiogenesis, metabolism glucose, cell differentiation, apoptosis, and resistance to radiotherapy and chemotherapy. There are three known isoforms of the ? subunit (1, 2 and 3) and all heterodimerize with the ? subunit. HIFs are composed of different functional domains, such as the DNA binding domain, the heterodimerization, transactivation and the oxygen-dependent degradation domains. Currently, little is known about the mechanisms of structural and functional domains of HIF-1, thus this work was to study these structural domains. The domain (bHLH, Pas-1 and Pac) of HIF-1? and HIF-? in different combinations with each other and Pac domain of HIF-3? were cloned, the proteins were expressed in bacterial system and purified by various chromatographic techniques. Several of these constructs proved insoluble or susceptible to degradation, while others were purified successfully. The constructs Pac, an example of success in production, were tested for fluorescence anisotropy and nuclear magnetic resonance, which allowed us to characterize the profiles of the interaction between the various combinations of heterodimers. In this context, the results show that the dynamic equilibrium of the interaction between the Pac-1? and -1? subunits is achieved immediately, whereas for the interaction between Pac-3? and -1?, it takes at least 30 hours of incubation. The same can be observed from the characterization of direct interaction between Pac-1? and -3?. From the NMR experiments, it was possible to identify the region of interaction between the subunits -1? and -3? with the -1? subunit. Both ? subunits interact with Pac-1? via betastrands 1 and 5 and the loop between the strands 4 and 5. Overall, these results impact in the mechanism of HIF-3? antagonizing the transcriptional activity of HIF-1?. We also obtained single crystals for Pac-3? subunit, which were subjected to preliminary experiments of X-ray diffraction. Although resulting in anisotropic, insufficient data for and structural resolution, it has allowed the characterization of crystalline parameters, including the presence of a high solvent content. Additionally, we also present the results targeting the expression and crystallization of Prolyl-hydroxylases (PHDs) human isoforms 1-4, during the six-month period at the Structural Genomics Consortium (SGC), the University of Oxford in England. Several construct from of isoforms 1 and 3 were successfully expressed and purified in the soluble form. Likewise, crystals were obtained, but these were determined to be composed by inorganic compounds present in the crystallization conditions. At the end, a collaboration was established between our and the SGC group for the structural studies with the PHDs to extend and carry out the experiments in our lab here in Brazil / Mestrado / Clinica Medica / Mestra em Clínica Médica
5

Production, in vitro modification, and interaction analysis of a hydroxyproline-dependent protein

Plavsic, Milica January 2023 (has links)
The development of a biologic protein involves different stages and becomes a highly complex process which can be costly and time consuming to scale up for industrial production. Therefore, optimization is a necessary part of the production process development to lower the production expenses.An on-going project is working on upscaling the production of a protein derived from mussel adhesive proteins (MAPs) which has great properties to be used as a pharmaceutical drug or in medical devices. The protein is expressed in a bacterial host cell and the necessary post translational modifications (PTMs) are done in-vitro using enzymes. The work presented in this report was done to optimize both the protein production in lab scale bioreactors and the enzymatic reaction using an immobilized prolyl-4-hydroxylase (P4H) which does a post translational modification on prolyl-residues. Additionally, an interaction study was conducted to better understand the hydroxylation using the prolyl-4-hydroxylase.For the bioreactor optimization four initial trials were performed testing different growth and induction temperatures and also comparing exponential to linear feeding. From these trials it appeared that having 30 ℃ growth overnight and induction at the same temperature in combination with an exponential feeding rate gave the best results. The modifications done by the prolyl-4-hydroxylase were analysed by LC-MS and suggest that longer incubation time and more immobilized protein gives more modifications in the tested ranges and the possibilities of reusing the immobilized proteins looks promising. No conclusive data was discovered for the optimal substrate concentration. The interaction study revealed the importance of reagents used for catalysis with the enzyme to be present for interaction to occur, however more work needs to be done to discover an accurate KD for the interaction.
6

miR‐17/20 Controls Prolyl Hydroxylase 2 (PHD2)/Hypoxia‐Inducible Factor 1 (HIF1) to Regulate Pulmonary Artery Smooth Muscle Cell Proliferation

Chen, Tianji, Zhou, Qiyuan, Tang, Haiyang, Bozkanat, Melike, Yuan, Jason X.‐J., Raj, J. Usha, Zhou, Guofei 05 December 2016 (has links)
Background-Previously we found that smooth muscle cell (SMC)-specific knockout of miR-17 similar to 92 attenuates hypoxia-induced pulmonary hypertension. However, the mechanism underlying miR-17 similar to 92-mediated pulmonary artery SMC (PASMC) proliferation remains unclear. We sought to investigate whether miR-17 similar to 92 regulates hypoxia-inducible factor (HIF) activity and PASMC proliferation via prolyl hydroxylases (PHDs). Methods and Results-We show that hypoxic sm-17 similar to 92(-/-) mice have decreased hematocrit, red blood cell counts, and hemoglobin contents. The sm-17 similar to 92 (-/-) mouse lungs express decreased mRNA levels of HIF targets and increased levels of PHD2. miR-17 similar to 92 inhibitors suppress hypoxia-induced levels of HIF1 alpha, VEGF, Glut1, HK2, and PDK1 but not HIF2 alpha in vitro in PASMC. Overexpression of miR-17 in PASMC represses PHD2 expression, whereas miR-17/20a inhibitors induce PHD2 expression. The 3'-UTR of PHD2 contains a functional miR-17/20a seed sequence. Silencing of PHD2 induces HIF1a and PCNA protein levels, whereas overexpression of PHD2 decreases HIF1 alpha and cell proliferation. SMC-specific knockout of PHD2 enhances hypoxia-induced vascular remodeling and exacerbates established pulmonary hypertension in mice. PHD2 activator R59949 reverses vessel remodeling in existing hypertensive mice. PHDs are dysregulated in PASMC isolated from pulmonary arterial hypertension patients. Conclusions-Our results suggest that PHD2 is a direct target of miR-17/20a and that miR-17 similar to 92 contributes to PASMC proliferation and polycythemia by suppression of PHD2 and induction of HIF1 alpha.
7

Hypoxia and hematopoietic stem cell control with the substance Adaptaquin : An evaluation of hematopoietic stem cell’s proliferation and differentiation in artificially induced hypoxia

Christiansen, Jens January 2023 (has links)
Hematopoietic stem cells (HSCs) have historically been difficult to maintain ex vivo with many attempts to culture them in vitro by mimicking their natural biological environment. Providing a hypoxic environment is one way to achieve this goal and can be performed by using hypoxia stimulating compounds that inhibits the degradation of HIF1a which plays an important role in regulating hypoxia. For each sample 50 murine HSCs were isolated with fluorescence-activated cell sorting (FACS) and cultured with different concentrations of the hypoxia inducible compound Adaptaquin for 13 days followed by analysing with flow cytometry. The results showed an increase in proliferation of treated cells with the highest average total viable cell count for cells treated with 100 nM Adaptaquin of 4,70 ± 1,12 x 105 cells compared to the control which had 2,39 ± 0,76 x 105 cells. The HSC frequency was highest in the control samples with an average of 1,91 ± 0,42 % compared to the 5 mM treated samples with the highest average HSC frequency which was 1,52 ± 0,82 %. The biggest noticeable difference between the control and treated samples was seen when observing the total cell count. The difference in proliferation was on the other hand too small to see significant difference between the samples. The conclusion is that Adaptaquin did not have any significant impact on keeping the cells undifferentiated but could have a potential to be used as a compliment to other factors to maintain HSCs in vitro and to mimic its hypoxic biological environment. / Hematopoetiska stamceller (HSCs) har historiskt sett varit svåra att odla ex vivo och många försök har genomförts in vitro genom att efterlikna deras naturliga biologiska miljö. Att tillhandahålla en hypoxisk miljö är en metod för att uppnå detta och kan göras med användning hypoxi-stimulerande substanser som hämmar nedbrytningen av HIF1a som spelar en viktig roll i regleringen av hypoxi. För varje prov isolerades 50 murina HSCs med fluorescence-activated cell sorting (FACS) och odlades med olika koncentrationer av det hypoxi-inducerande ämnet Adaptaquin under 13 dagar följt av analys med flödescytometri. Resultaten visade en ökning i avseende på proliferationen hos behandlade celler där det högsta genomsnittliga totala antalet levande celler behandlade med 100 nM Adaptaquin som var 4,70 ± 1,12 x 105 celler jämfört med kontrollen som hade 2,39 ± 0,76 x 105 celler. HSC-frekvensen var högst i kontrollproverna med ett genomsnitt på 1,91 ± 0,42 % jämfört med proverna behandlade med 5 mM Adaptaquin som hade den högsta genomsnittliga HSC-frekvensen som låg på 1,52 ± 0,82 %. Den största synliga skillnaden mellan kontroll- och behandlingsprover var synlig när det observerade totala antalet celler jämfördes mellan behandlade prover som i genomsnitt hade fler totala celler. Skillnaden i proliferation var å andra sidan för liten för att se en signifikant skillnad mellan proverna. Slutsatsen är att Adaptaquin inte hade någon signifikant påverkan på att hålla HSCs odifferentierade men kan ha potential att användas som ett komplement till andra faktorer för att odla HSCs in vitro och efterlikna dess hypoxiska biologiska miljö.
8

Structural and mechanistic studies on prolyl hydroxylases

Chowdhury, Rasheduzzaman January 2008 (has links)
Oxygen dependent prolyl-4-hydroxylation of the alpha-subunit of the hypoxia inducible transcription factor (HIF-alpha) plays an essential role in the hypoxic response. Hydroxylation of proline residues in the N- or C-terminal oxygen dependent degradation domains (NODD or CODD) increases the affinity of HIF-alpha to the von Hippel-Lindau protein (pVHL) by approx. 1000 fold so signalling for HIF-alpha degradation. With limiting oxygen, HIF-alpha hydroxylation slows, it dimerises with HIF-beta and activates the transcription of a gene array. Prolyl-4-hydroxylation also stabilises the triple helix structure of collagen, the most abundant human protein. Both the collagen and the HIF prolyl hydroxylases (PHDs) are Fe(II) and 2-oxoglutarate (2OG) dependent oxygenases. Crystal structures of PHD2 in complex with CODD were determined in the current study. Together with biochemical analyses, the results demonstrate that catalysis involves a mobile region of PHD2 that encloses the hydroxylation site and stabilises the PHD2.Fe(II).2OG complex. When bound to PHD2 the pyrrolidine ring of the non-hydroxylated proline-residue adopts a C⁴-endo conformation. Evidence is provided that 4R-hydroxylation enables a stereoelectronic effect that changes the proline conformation to the C⁴-exo state, as observed when hydroxylated HIF-alpha is bound to pVHL and in collagen. The results help to rationalise NODD/CODD selectivity data for PHD isoforms and the effects of clinically observed mutations on PHD2 catalysis. Analyses on the interaction of nitric oxide with PHD2 are described and discussed with respect to regulation of the hypoxic response by nitric oxide.
9

Studies on HIF hydroxylases

Webb, James D. January 2008 (has links)
Hypoxia-inducible factor (HIF) is the master regulator of genes involved in adaptation to hypoxia. The stability and transcriptional activity of HIF are regulated by post-translational hydroxylations: prolyl hydroxylation by the prolyl hydroxylase domain-containing enzymes PHD1 – 3 earmarks HIF for proteasomal degradation, whilst asparaginyl hydroxylation by factor inhibiting HIF (FIH) blocks the interaction of HIF with the transcriptional coactivators p300/CBP. The PHDs and FIH hydroxylate HIF directly from molecular oxygen and are therefore oxygen sensors. Recent literature shows that FIH also hydroxylates a number of proteins containing an ankyrin-repeat domain (ARD). Together with reports suggesting that the PHDs are involved in HIF-independent pathways, this suggests that the HIF hydroxylases may have a wide range of non-HIF targets. This thesis describes my investigations into novel substrates of the HIF hydroxylases. This work has characterized the FIH-dependent hydroxylation of the ARD-containing protein Notch1, and defined a consensus sequence for hydroxylation that corresponds to the ankyrin-repeat consensus. Using this consensus potential sites of hydroxylation in a novel ARD FIH substrate, myosin phosphatase targeting subunit 1 (MYPT1), were identified then subsequently confirmed and characterized. Notch1 competes with HIF for FIH hydroxylation. My experiments show that this occurs because Notch1 is a more efficient substrate than HIF, whilst studies on MYPT1 and other proteins indicate that competitive inhibition of FIH may be a general property of ARDs. There are more than 300 ARD proteins in the human genome, and this thesis demonstrates that FIH may hydroxylate a significant percentage of these. In addition to the analysis of ARD hydroxylation a proteomic investigation into novel PHD3 substrates has identified two candidate proteins, suggesting that the PHDs may also have multiple targets. These results have important implications for oxygen sensing, and indicate that post-translational hydroxylation is likely to be a widespread modification in cell biology.

Page generated in 0.0914 seconds