Resumo: A Computação Evolucionária (CE) introduz um novo paradigma para resolver problemas em Inteligência Artificial, representando candidatos à solução como indivíduos e evoluindo-os com base na Teoria da Seleção Natural de Darwin. Algoritmos Genéticos (AG) e Programação Genética (PG), duas importantes técnicas de CE, têm sido aplicadas com sucesso tanto em cenários teóricos quanto em situações práticas. Este trabalho discute o ajuste automático dos parâmetros que controlam o processo de busca neste tipo de algoritmo. Baseado em uma pesquisa recente, um método que controla o tamanho da população em AG é adaptado e implementado em PG. Uma série de experimentos clássicos foi realizada, antes e depois das modificações, mostrando que este método pode aumentar a robustez e a confiabilidade no algoritmo. Os dados permitem uma discussão sobre o método e a importância da adaptação de parâmetros em algoritmos de CE.
Identifer | oai:union.ndltd.org:IBICT/oai:dspace.c3sl.ufpr.br:1884/25118 |
Date | 10 February 2011 |
Creators | Spinosa, Eduardo Jaques |
Contributors | Universidade Federal do Paraná. Setor de Ciencias Exatas. Programa de Pós-Graduaçao em Informática, Ramirez Pozo, Aurora Trinidad |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFPR, instname:Universidade Federal do Paraná, instacron:UFPR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds